Nutrient limitations on primary productivity and phosphorus removal by biological carbon pumps in dammed karst rivers: Implications for eutrophication control
文献类型:期刊论文
作者 | Hailong Sun; Cuihong Han; Zaihua Liu; Yu Wei; Song Ma; Qian Bao; Yi Zhang; Hao Yan |
刊名 | Journal of Hydrology
![]() |
出版日期 | 2022 |
卷号 | 607页码:127480 |
关键词 | Dic Fertilization bcp Effect phosphorus Remova lnp Stoichiometry cyanobacteria Abundance eutrophication Control dammed Karst Rivers |
DOI | 10.1016/j.jhydrol.2022.127480 |
英文摘要 | Biological carbon pumps (BCPs) convert dissolved inorganic carbon (DIC) into autochthonous organic carbon (AOC), which is the key to form long-term stable carbonate weathering-related carbon sink. The DIC fertilization may increase the strength of BCP. As a phase of BCP, eutrophication is one of the major problems in surface water environments which shows poor water quality with harmful cyanobacteria blooms. It is generally believed that the controlling elements of eutrophication are nitrogen (N) and phosphorus (P), while the controlling elements of BCP also includes carbon (C). Meanwhile P removal by BCPs through the coprecipitation of P with calcite and Fe (III) oxyhydroxide colloids decreases its content in water bodies and prevent water from cyanobacteria eutrophication. In the present study, we examine the seasonal variations of general physiochemical parameters of the surface water, DIC, total N and total P concentrations, chlorophyll concentrations in three karst river-reservoir systems (PZR, PDR and HFR) in Guizhou Province, Southwest China. The phytoplankton community structure dynamics and the settling flux of the total P and P fractions in the settling particulate matter in PZR and HFR were also examined. It was found that: (1) the nutrient limitations of BCPs shifted from C-limitation to N- or Plimitation after the rivers were dammed; (2) P removal by BCPs reduced the total P concentration and increased the stoichiometric N:P ratio in surface waters; (3) P removal by BCPs alleviated the development of eutrophication by decreasing the relative abundance of Cyanobacteria. Our results demonstrate that the damming of a river may shift the nutrient limitation patterns of dammed karst rivers and the P removal by BCP may retard the development of water body into Cyanophyta-type eutrophication. This may have important implications for eutrophication control (i.e., strengthening BCP effect via DIC fertilization) in HCO3-Ca type surface water, especially in karst areas, which cover about 15% of the world land surface. |
URL标识 | 查看原文 |
语种 | 英语 |
源URL | [http://ir.gyig.ac.cn/handle/42920512-1/13467] ![]() |
专题 | 地球化学研究所_环境地球化学国家重点实验室 |
作者单位 | 1.Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550081, Peoples R China 2.CAS Ctr Excellence Quaternary Sci & Global Change, Xian 710061, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Hailong Sun,Cuihong Han,Zaihua Liu,et al. Nutrient limitations on primary productivity and phosphorus removal by biological carbon pumps in dammed karst rivers: Implications for eutrophication control[J]. Journal of Hydrology,2022,607:127480. |
APA | Hailong Sun.,Cuihong Han.,Zaihua Liu.,Yu Wei.,Song Ma.,...&Hao Yan.(2022).Nutrient limitations on primary productivity and phosphorus removal by biological carbon pumps in dammed karst rivers: Implications for eutrophication control.Journal of Hydrology,607,127480. |
MLA | Hailong Sun,et al."Nutrient limitations on primary productivity and phosphorus removal by biological carbon pumps in dammed karst rivers: Implications for eutrophication control".Journal of Hydrology 607(2022):127480. |
入库方式: OAI收割
来源:地球化学研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。