An integrated life cycle and water footprint assessment of nonfood crops based bioenergy production
文献类型:期刊论文
作者 | Li, Jun; Xiong, Fengyin; Chen, Zhuo |
刊名 | SCIENTIFIC REPORTS
![]() |
出版日期 | 2021-02-16 |
卷号 | 11期号:1页码:- |
ISSN号 | 2045-2322 |
英文摘要 | Biomass gasification, especially distribution to power generation, is considered as a promising way to tackle global energy and environmental challenges. However, previous researches on integrated analysis of the greenhouse gases (GHG) abatement potentials associated with biomass electrification are sparse and few have taken the freshwater utilization into account within a coherent framework, though both energy and water scarcity are lying in the central concerns in China's environmental policy. This study employs a Life cycle assessment (LCA) model to analyse the actual performance combined with water footprint (WF) assessment methods. The inextricable trade-offs between three representative energy-producing technologies are explored based on three categories of non-food crops (maize, sorghum and hybrid pennisetum) cultivated in marginal arable land. WF results demonstrate that the Hybrid pennisetum system has the largest impact on the water resources whereas the other two technology options exhibit the characteristics of environmental sustainability. The large variances in contribution ratio between the four sub-processes in terms of total impacts are reflected by the LCA results. The Anaerobic Digestion process is found to be the main contributor whereas the Digestate management process is shown to be able to effectively mitigate the negative environmental impacts with an absolute share. Sensitivity analysis is implemented to detect the impacts of loss ratios variation, as silage mass and methane, on final results. The methane loss has the largest influence on the Hybrid pennisetum system, followed by the Maize system. Above all, the Sorghum system demonstrates the best performance amongst the considered assessment categories. Our study builds a pilot reference for further driving large-scale project of bioenergy production and conversion. The synergy of combined WF-LCA method allows us to conduct a comprehensive assessment and to provide insights into environmental and resource management. |
WOS研究方向 | Multidisciplinary Sciences |
源URL | [http://ir.rcees.ac.cn/handle/311016/45412] ![]() |
专题 | 生态环境研究中心_城市与区域生态国家重点实验室 |
作者单位 | 1.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China 2.South China Agr Univ, Minist Agr, Key Lab Energy Plants Resource & Utilizat, Guangzhou 510642, Peoples R China 3.Curtin Univ, Sch Management, Perth, Australia 4.Sun Yat Sen Univ, Sch Int Relat, Guangzhou, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Jun,Xiong, Fengyin,Chen, Zhuo. An integrated life cycle and water footprint assessment of nonfood crops based bioenergy production[J]. SCIENTIFIC REPORTS,2021,11(1):-. |
APA | Li, Jun,Xiong, Fengyin,&Chen, Zhuo.(2021).An integrated life cycle and water footprint assessment of nonfood crops based bioenergy production.SCIENTIFIC REPORTS,11(1),-. |
MLA | Li, Jun,et al."An integrated life cycle and water footprint assessment of nonfood crops based bioenergy production".SCIENTIFIC REPORTS 11.1(2021):-. |
入库方式: OAI收割
来源:生态环境研究中心
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。