Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir
文献类型:期刊论文
作者 | Su, Ming; Zhu, Yiping; Jia, Zeyu![]() |
刊名 | WATER RESEARCH
![]() |
出版日期 | 2021-03-15 |
卷号 | 192页码:- |
关键词 | 2-Methylisoborneol (MIB) Planktothrix Subsurface cyanobacteria Reservoir Odor |
ISSN号 | 0043-1354 |
英文摘要 | Identification of MIB(2-methylisoborneol)-producing cyanobacteria in source water has been a big challenge for reservoir authorities because it normally requires isolation of cyanobacteria strains. Here, a protocol based on Pearson's product moment correlation analysis combined with standardized data treatment and expert judgement was developed to sort out the MIB producer(s), mainly based on routine monitoring data from an estuary drinking water reservoir in the Yangtze River, China, and a risk model using quantile regressions was established to evaluate the risk of MIB occurrences. This reservoir has suffered from MIB problems in summer since 2011. Among 323 phytoplankton species, Planktothrix was judged to be the MIB producer in this reservoir because it exhibited the highest correlation coefficient (R = 0.60) as well as the lowest false positive-ratio (FP% = 0) and false-negative rate (FN% = 14). The low false-positive rate is particularly important, since MIB should not detected without detection of the producer. A high light extinction coefficient (k = 5 . 57 +/- 2.48 m(-1)) attributed to high turbidity loading in the river water lowered the subsurface water light intensity, which could protect the low irradiance Planktothrix from excessive solar radiation, and allow them to grow throughout the summer. The risk model shows that the probability of suffering unacceptable MIB concentrations (> 15 ng L-1 ) in water is as high as 90% if the cell density of Planktothrix is > 609.0 cell mL(-1), while the risk will be significantly reduced to 50% and 10% at cell densities of 37.5 cell mL(-1) and 9.6 cell mL(-1), respectively. The approach developed in this study, including the protocol for identification of potential producers and the risk model, could provide a reference case for the management of source water suffering from MIB problems using routine monitoring data. (C) 2021 Elsevier Ltd. All rights reserved. |
WOS研究方向 | Engineering, Environmental ; Environmental Sciences ; Water Resources |
源URL | [http://ir.rcees.ac.cn/handle/311016/46223] ![]() |
专题 | 生态环境研究中心_中国科学院饮用水科学与技术重点实验室 |
作者单位 | 1.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Univ Adelaide, Sch Biol Sci, Dept Ecol & Evolutionary Biol, Adelaide, SA 5005, Australia 4.Chinese Res Inst Environm Sci, State Environm Protect Key Lab Lake Pollut Contro, Beijing 100012, Peoples R China 5.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Aquat Chem, Beijing 100085, Peoples R China 6.Shanghai Chengtou Raw Water Co Ltd, Shanghai 200125, Peoples R China |
推荐引用方式 GB/T 7714 | Su, Ming,Zhu, Yiping,Jia, Zeyu,et al. Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir[J]. WATER RESEARCH,2021,192:-. |
APA | Su, Ming.,Zhu, Yiping.,Jia, Zeyu.,Liu, Tingting.,Yu, Jianwei.,...&Yang, Min.(2021).Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir.WATER RESEARCH,192,-. |
MLA | Su, Ming,et al."Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir".WATER RESEARCH 192(2021):-. |
入库方式: OAI收割
来源:生态环境研究中心
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。