Fe isotope fractionation caused by phase transition of FeS and implications for Fe isotope signatures of the mantle and core
文献类型:期刊论文
作者 | Liu, Shanqi4,5; Li, Yongbing1; Yang, Zhiming3; Liu, Jianming2 |
刊名 | GEOCHIMICA ET COSMOCHIMICA ACTA
![]() |
出版日期 | 2023 |
卷号 | 340页码:38-50 |
关键词 | Fe isotope fractionation FeS Silicates Phase transition First-principles calculations |
ISSN号 | 0016-7037 |
DOI | 10.1016/j.gca.2022.10.042 |
英文摘要 | Iron is the most important component of the cores of terrestrial planets, and iron sulfide (FeS) is one of the preferred candidates present in these cores. FeS is also ubiquitous in Earth's crust, peridotites, and extraterrestrial samples. Knowledge of the phase stability of FeS and Fe isotope fractionation between FeS phases and mantle silicates is of great importance for understanding the interior of the Earth and terrestrial planets. In this study, first-principles methods were used to study the pressure-dependent phase stability of FeS and equilibrium Fe isotope fractionation in FeS, hexagonal close-packed (hcp) Fe, and mantle silicates at the pressure of Earth's interior. FeS underwent four phase transitions at 0 K. The first is the transition from FeS I to FeS II at 2.8 GPa, the second from FeS II to FeS III at 7.5 GPa, the third from FeS III to FeS VI at 74.2 GPa, and the fourth from FeS VI to FeS VII at 122.2 GPa. Apart from the fact that the transition from FeS I to FeS II causes negligible Fe isotope fractionation, other phase transitions can cause measurable Fe isotope fractionation at corresponding pressures along the geotherm. Fe isotopes exhibit measurable fractionation between FeS and mantle silicates under mantle pressure-temperature conditions. Each phase was more enriched in heavy Fe with increasing depth in the pressure range of 7.5-90 GPa. If the silicate mantle is enriched in heavy Fe relative to the core or Fe has negligible isotope fractionation between them under the core-mantle boundary (CMB) conditions of the Earth, the Fe2+/(Fe2++Mg) in (Fe2+, Mg)SiO3 post-perovskite is less than 50%. At the temperature-pressure conditions of Earth's core, equilibrium Fe isotope fractionation between hcp Fe and FeS VII can be neglected. FeS III is more likely to exist in the Martian core relative to FeS VI. (c) 2022 Elsevier Ltd. All rights reserved. |
WOS关键词 | POST-PEROVSKITE PHASE ; HIGH-PRESSURE ; HIGH-TEMPERATURE ; 1ST-PRINCIPLES CALCULATIONS ; EQUILIBRIUM SILICON ; INTERNAL STRUCTURE ; STABLE-ISOTOPES ; IRON-METEORITES ; RAMAN-SPECTRA ; AB-INITIO |
WOS研究方向 | Geochemistry & Geophysics |
语种 | 英语 |
WOS记录号 | WOS:000911501800001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://ir.iggcas.ac.cn/handle/132A11/106864] ![]() |
专题 | 地质与地球物理研究所_中国科学院矿产资源研究重点实验室 |
通讯作者 | Li, Yongbing |
作者单位 | 1.Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Mineral Resources, Beijing 100029, Peoples R China 3.Chinese Acad Geol Sci, Inst Geol, Beijing 100037, Peoples R China 4.Sun Yat Sen Univ, Sch Earth Sci & Engn, Guangzhou 510275, Peoples R China 5.Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519080, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Shanqi,Li, Yongbing,Yang, Zhiming,et al. Fe isotope fractionation caused by phase transition of FeS and implications for Fe isotope signatures of the mantle and core[J]. GEOCHIMICA ET COSMOCHIMICA ACTA,2023,340:38-50. |
APA | Liu, Shanqi,Li, Yongbing,Yang, Zhiming,&Liu, Jianming.(2023).Fe isotope fractionation caused by phase transition of FeS and implications for Fe isotope signatures of the mantle and core.GEOCHIMICA ET COSMOCHIMICA ACTA,340,38-50. |
MLA | Liu, Shanqi,et al."Fe isotope fractionation caused by phase transition of FeS and implications for Fe isotope signatures of the mantle and core".GEOCHIMICA ET COSMOCHIMICA ACTA 340(2023):38-50. |
入库方式: OAI收割
来源:地质与地球物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。