Discovery of PDEs driven by data with sharp gradient or discontinuity
文献类型:期刊论文
作者 | Wang, Kang; Zhang L(张磊); Tang, Shaoqiang |
刊名 | COMPUTERS & MATHEMATICS WITH APPLICATIONS
![]() |
出版日期 | 2023-06 |
卷号 | 140页码:33-43 |
关键词 | System identification Partial differential equations Gaussian process Discontinuous data Machine learning |
ISSN号 | 0898-1221 |
DOI | 10.1016/j.camwa.2023.03.021 |
英文摘要 | In the data-driven discovery of partial differential equations, previous researchers have successfully employed various methods to derive estimation of parameters from smooth data, but not from data with sharp gradient or discontinuity. To capture the sharp gradient/discontinuous part in data, we introduce a non-zero mean function in terms of the Sigmoid function in the Gaussian process prior. We test the method using noise-free and noisy data on the regression problem and the inverse problem of Burgers' equation, inviscid Burgers' equation, and the nonlinear wave system (NLWS), and verify its effectiveness and robustness. |
分类号 | 一类 |
WOS研究方向 | WOS:000968388000001 |
语种 | 英语 |
资助机构 | National Natural Science Foundation of China ; NSFC [12202451] |
其他责任者 | Zhang, L |
源URL | [http://dspace.imech.ac.cn/handle/311007/92243] ![]() |
专题 | 力学研究所_非线性力学国家重点实验室 |
作者单位 | 1.(Wang Kang, Tang Shaoqiang) Peking Univ Coll Engn HEDPS & LTCS Beijing 100871 Peoples R China 2.(Zhang Lei) Chinese Acad Sci Inst Mech State Key Lab Nonlinear Mech Beijing 100190 Peoples R China 3.(Zhang Lei) Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Kang,Zhang L,Tang, Shaoqiang. Discovery of PDEs driven by data with sharp gradient or discontinuity[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS,2023,140:33-43. |
APA | Wang, Kang,张磊,&Tang, Shaoqiang.(2023).Discovery of PDEs driven by data with sharp gradient or discontinuity.COMPUTERS & MATHEMATICS WITH APPLICATIONS,140,33-43. |
MLA | Wang, Kang,et al."Discovery of PDEs driven by data with sharp gradient or discontinuity".COMPUTERS & MATHEMATICS WITH APPLICATIONS 140(2023):33-43. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。