中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Shape optimization of a meniscus-adherent nanotip

文献类型:期刊论文

作者Tian SH(田诗豪); Chen XD(陈旭东); Yuan QZ(袁泉子)
刊名NANOSCALE
出版日期2023-07-06
卷号15期号:26页码:11099-11106
ISSN号2040-3364
DOI10.1039/d3nr00857f
英文摘要A soluble tip can dissolve into a tip with curvature when partially immersed in a liquid. This process has been used in the manufacture of sophisticated tips. However, it is difficult to observe the dissolution process in the laboratory, and the dissolution mechanisms at the nanoscale still need to be better understood. Here we utilize molecular dynamics simulations to study the dissolution process of a meniscus-adherent nanotip. The tip apex curvature radius reaches its minimum in the intermediate state. The shape of this state is defined as the optimized shape, which can be used as the termination criterion in applications. In addition, the shape of one optimized tip can be well-fitted to a double-Boltzmann function. The upper Boltzmann curve of this function forms via the competition between the chemical potential influence and the intermolecular forces, while the formation of the lower Boltzmann curve is controlled by the chemical potential influence. The parameters of the double-Boltzmann function are strongly correlated with the nanotip's initial configuration and dissolubility. A shape factor xi is proposed to characterize the sharpness of optimized tips. Theory and simulations show that optimized tips possess a greater ability to shield the capillary effect than common tips. Our findings elucidate the meniscus-adherent nanotip's dissolution process and provide theoretical support for nano-instrument manufacture.
分类号二类/Q1
WOS研究方向Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied
语种英语
WOS记录号WOS:001010850200001
资助机构National Natural Science Foundation of China (NSFC) [12072346] ; Open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education [NJ2022002 (INMD-2022M01)]
其他责任者Yuan, QZ (corresponding author), Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China. ; Yuan, QZ (corresponding author), Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China.
源URL[http://dspace.imech.ac.cn/handle/311007/92435]  
专题力学研究所_非线性力学国家重点实验室
作者单位1.{Tian Shihao, Chen Xudong, Yuan Quanzi} Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China
2.{Tian Shihao, Chen Xudong, Yuan Quanzi} Chinese Acad Sci Inst Mech State Key Lab Nonlinear Mech Beijing 100190 Peoples R China
推荐引用方式
GB/T 7714
Tian SH,Chen XD,Yuan QZ. Shape optimization of a meniscus-adherent nanotip[J]. NANOSCALE,2023,15(26):11099-11106.
APA 田诗豪,陈旭东,&袁泉子.(2023).Shape optimization of a meniscus-adherent nanotip.NANOSCALE,15(26),11099-11106.
MLA 田诗豪,et al."Shape optimization of a meniscus-adherent nanotip".NANOSCALE 15.26(2023):11099-11106.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。