A Marine Small-Targets Classification Algorithm Based on Improved Convolutional Neural Networks
文献类型:期刊论文
作者 | Guo, Huinan1,2![]() ![]() |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2023-06-03 |
卷号 | 15期号:11 |
关键词 | ship classification SAR deep learning CNN |
ISSN号 | 2072-4292 |
DOI | 10.3390/rs15112917 |
产权排序 | 1 |
英文摘要 | Deep learning, especially convolutional neural network (CNN) techniques, has been shown to have superior performance in ship classification, as have small-target recognition studies in safety inspections of hydraulic structures such as ports and dams. High-resolution synthetic aperture radar (SAR)-based maritime ship classification plays an increasingly important role in marine surveillance, marine rescue, and maritime ship management. To improve ship classification accuracy and training efficiency, we proposed a CNN-based ship classification method. Firstly, the image characteristics of different ship structures and the materials of ship SAR images were analyzed. We then constructed a ship SAR image dataset and performed preprocessing operations such as averaging. Combined with a classic neural network structure, we created a new convolutional module, namely, the Inception-Residual Controller (IRC) module. A convolutional neural network was built based on the IRC module to extract image features and establish a ship classification model. Finally, we conducted simulation experiments for ship classification and analyzed the experimental results for comparison. The experimental results showed that the average accuracy of ship classification of the model in this paper reached 98.71%, which was approximately 3% more accurate than the traditional network model and approximately 1% more accurate compared with other recently improved models. The new module also performed well in evaluation metrics, such as the recall rate, with accurate classifications. The model could satisfactorily describe different ship types. Therefore, it could be applied to marine ship classification management with the possibility of being extended to hydraulic building target recognition tasks. |
语种 | 英语 |
WOS记录号 | WOS:001004277200001 |
出版者 | MDPI |
源URL | [http://ir.opt.ac.cn/handle/181661/96530] ![]() |
专题 | 西安光学精密机械研究所_动态光学成像研究室 |
通讯作者 | Guo, Huinan |
作者单位 | 1.Xian Key Lab Spacecraft Opt Imaging & Measurement, Xian 710119, Peoples R China 2.Xian Inst Opt & Precis Mech CAS, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Guo, Huinan,Ren, Long. A Marine Small-Targets Classification Algorithm Based on Improved Convolutional Neural Networks[J]. REMOTE SENSING,2023,15(11). |
APA | Guo, Huinan,&Ren, Long.(2023).A Marine Small-Targets Classification Algorithm Based on Improved Convolutional Neural Networks.REMOTE SENSING,15(11). |
MLA | Guo, Huinan,et al."A Marine Small-Targets Classification Algorithm Based on Improved Convolutional Neural Networks".REMOTE SENSING 15.11(2023). |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。