Interpretation of Interstitial Lung Diseases from Magnetic Resonance Image using deep learning
文献类型:会议论文
作者 | Tang, Zijia4; Li, Xijie1,2,3 |
出版日期 | 2022 |
会议日期 | 2022-12-02 |
会议地点 | London, ENGLAND |
关键词 | CNN Transform NSIP/UIP |
DOI | 10.1109/AEIS59450.2022.00027 |
页码 | 146-151 |
英文摘要 | Usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP) shared similar patterns in medical images but had different treatments and outcomes. This study presented an automatically distinguishable tool, named ConvT, using deep learning methods to help the clinicians differentiate NSIP from UIP based on MRI images. ConvT employed a CNN feature extractor and a cross-view transformer to classify the biomedical patterns that indicate NSIP or UIP. The experiment in a dataset with over 417 MRI T2WI images showed ConvT had 97.62% accuracy and 0.9767 F1 scores in the classification task. The visualization of ConvT illustrated that the proposed model can correctly identify the specific patterns of both NSIP and UIP. |
产权排序 | 3 |
会议录 | 2022 INTERNATIONAL CONFERENCE ON ADVANCED ENTERPRISE INFORMATION SYSTEM, AEIS
![]() |
会议录出版者 | IEEE COMPUTER SOC |
语种 | 英语 |
ISBN号 | 979-8-3503-2437-2 |
WOS记录号 | WOS:001012673800020 |
源URL | [http://ir.opt.ac.cn/handle/181661/96674] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Li, Xijie |
作者单位 | 1.Wuhan Univ Technol, Wuhan, Peoples R China 2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China 3.Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya, Peoples R China 4.Guangdong Expt High Sch, Guangzhou, Peoples R China |
推荐引用方式 GB/T 7714 | Tang, Zijia,Li, Xijie. Interpretation of Interstitial Lung Diseases from Magnetic Resonance Image using deep learning[C]. 见:. London, ENGLAND. 2022-12-02. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。