中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Interpretation of Interstitial Lung Diseases from Magnetic Resonance Image using deep learning

文献类型:会议论文

作者Tang, Zijia4; Li, Xijie1,2,3
出版日期2022
会议日期2022-12-02
会议地点London, ENGLAND
关键词CNN Transform NSIP/UIP
DOI10.1109/AEIS59450.2022.00027
页码146-151
英文摘要

Usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP) shared similar patterns in medical images but had different treatments and outcomes. This study presented an automatically distinguishable tool, named ConvT, using deep learning methods to help the clinicians differentiate NSIP from UIP based on MRI images. ConvT employed a CNN feature extractor and a cross-view transformer to classify the biomedical patterns that indicate NSIP or UIP. The experiment in a dataset with over 417 MRI T2WI images showed ConvT had 97.62% accuracy and 0.9767 F1 scores in the classification task. The visualization of ConvT illustrated that the proposed model can correctly identify the specific patterns of both NSIP and UIP.

产权排序3
会议录2022 INTERNATIONAL CONFERENCE ON ADVANCED ENTERPRISE INFORMATION SYSTEM, AEIS
会议录出版者IEEE COMPUTER SOC
语种英语
ISBN号979-8-3503-2437-2
WOS记录号WOS:001012673800020
源URL[http://ir.opt.ac.cn/handle/181661/96674]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Li, Xijie
作者单位1.Wuhan Univ Technol, Wuhan, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China
3.Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya, Peoples R China
4.Guangdong Expt High Sch, Guangzhou, Peoples R China
推荐引用方式
GB/T 7714
Tang, Zijia,Li, Xijie. Interpretation of Interstitial Lung Diseases from Magnetic Resonance Image using deep learning[C]. 见:. London, ENGLAND. 2022-12-02.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。