中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Spatiotemporally Constrained Interpolation Method for Missing Pixel Values in the Suomi-NPP VIIRS Monthly Composite Images: Taking Shanghai as an Example

文献类型:期刊论文

作者Liu, Qingyun; Fan, Junfu1; Zuo, Jiwei; Li, Ping; Shen, Yunpeng; Ren, Zhoupeng1; Zhang, Yi2
刊名REMOTE SENSING
出版日期2023-05-08
卷号15期号:9页码:2480
关键词NPP-VIIRS time series interpolation spatiotemporally constrained interpolation time continuity constraint spatial correlation constraints accuracy comparison
DOI10.3390/rs15092480
文献子类Article
英文摘要The Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS/DNB) nighttime light data is a powerful remote sensing data source. However, due to stray light pollution, there is a lack of VIIRS data in mid-high latitudes during the summer, resulting in the absence of high-precision spatiotemporal continuous datasets. In this paper, we first select nine-time series interpolation methods to interpolate the missing images. Second, we construct image pixel-level temporal continuity constraints and spatial correlation constraints and remove the pixels that do not meet the constraints, and the eliminated pixels are filled with the focal statistics tool. Finally, the accuracy of the time series interpolation method and the spatiotemporally constrained interpolation method (STCIM) proposed in this paper are evaluated from three aspects: the number of abnormal pixels (NP), the total light brightness value (TDN), and the absolute value of the difference (ADN). The results show that the images simulated by the STCIM are more accurate than the nine selected time series interpolation methods, and the image interpolation accuracy is significantly improved. Relevant research results have improved the quality of the VIIRS dataset, promoted the application research based on the VIIRS DNB long-time series night light remote sensing image, and enriched the night light remote sensing theory and method system.
学科主题Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS关键词NIGHTTIME LIGHTS ; ECONOMIC-ACTIVITY ; TIME-SERIES ; CHINA ; URBANIZATION ; POPULATION ; DYNAMICS ; SCALES
语种英语
出版者MDPI
源URL[http://ir.igsnrr.ac.cn/handle/311030/193432]  
专题资源与环境信息系统国家重点实验室_外文论文
作者单位1.Shandong Univ Technol, Sch Civil & Architectural Engn, Zibo 255000, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
3.Cent South Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China
推荐引用方式
GB/T 7714
Liu, Qingyun,Fan, Junfu,Zuo, Jiwei,et al. A Spatiotemporally Constrained Interpolation Method for Missing Pixel Values in the Suomi-NPP VIIRS Monthly Composite Images: Taking Shanghai as an Example[J]. REMOTE SENSING,2023,15(9):2480.
APA Liu, Qingyun.,Fan, Junfu.,Zuo, Jiwei.,Li, Ping.,Shen, Yunpeng.,...&Zhang, Yi.(2023).A Spatiotemporally Constrained Interpolation Method for Missing Pixel Values in the Suomi-NPP VIIRS Monthly Composite Images: Taking Shanghai as an Example.REMOTE SENSING,15(9),2480.
MLA Liu, Qingyun,et al."A Spatiotemporally Constrained Interpolation Method for Missing Pixel Values in the Suomi-NPP VIIRS Monthly Composite Images: Taking Shanghai as an Example".REMOTE SENSING 15.9(2023):2480.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。