中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Retrieval and validation of the dawn-dusk land surface temperature from FY-3E MERSI-LL

文献类型:期刊论文

作者Cheng, Yuanliang1; Ni, Li4; Li, Xiujuan1; Feng, Rui3; Wu, Hua1
刊名INTERNATIONAL JOURNAL OF REMOTE SENSING
出版日期2023-06-28
关键词Feng Yun-3E medium resolution spectral imager low-light dawn-dusk orbit land surface temperature generalized split window
ISSN号0143-1161
DOI10.1080/01431161.2023.2221804
产权排序1
文献子类Article ; Early Access
英文摘要Land surface temperature (LST) is an important physical parameter that reflects changes in surface processes. Remote sensing makes it possible to obtain global or regional LSTs with high spatial and temporal resolution. Feng-Yun 3E (FY-3E) is the world's first civilian dawn-dusk orbiting meteorological satellite on board the Medium Resolution Spectral Imager - Low-Light (MERSI-LL) sensor capable of acquiring LST at 250 m spatial resolution at dawn and dusk. By complementing with existing polar-orbiting satellites, FY-3E can fill the satellite observation gap within the 6-hour assimilation window and further enhance the observation capability of LST. To retrieve accurate LST from MERSI-LL, the generalized split-window (GSW) method was developed. The GSW coefficients were derived from the simulation dataset produced by Moderate Resolution Transmittance Code 5.2 with an atmospheric profile database. As a key input to the GSW algorithm, the land surface emissivity was dynamically estimated by the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Emissivity Dataset in combination with the fractional vegetation cover. The water vapour content is calculated in real time by the split-window covariance/variance ratio method. The comparison between retrieved LSTs and in situ LSTs shows that the GSW algorithm can effectively retrieve the LSTs of vegetation cover surfaces. The root mean square error ranged from 0.79 to 1.79 K at dawn and from 1.32 to 1.92 K at dusk.
WOS关键词SPLIT-WINDOW ALGORITHM ; EMISSIVITY SEPARATION ; LANDSAT-8 DATA ; SATELLITE ; SURFRAD ; ASTER ; LST
WOS研究方向Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001015544500001
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.igsnrr.ac.cn/handle/311030/194369]  
专题资源与环境信息系统国家重点实验室_外文论文
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China
2.China Meteorol Adm, Shenyang Inst Atmospher Environm, Shenyang, Peoples R China
3.Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Yuanliang,Ni, Li,Li, Xiujuan,et al. Retrieval and validation of the dawn-dusk land surface temperature from FY-3E MERSI-LL[J]. INTERNATIONAL JOURNAL OF REMOTE SENSING,2023.
APA Cheng, Yuanliang,Ni, Li,Li, Xiujuan,Feng, Rui,&Wu, Hua.(2023).Retrieval and validation of the dawn-dusk land surface temperature from FY-3E MERSI-LL.INTERNATIONAL JOURNAL OF REMOTE SENSING.
MLA Cheng, Yuanliang,et al."Retrieval and validation of the dawn-dusk land surface temperature from FY-3E MERSI-LL".INTERNATIONAL JOURNAL OF REMOTE SENSING (2023).

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。