中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
High-quality super-resolution mapping using spatial deep learning

文献类型:期刊论文

作者Zhang, Xining8; Ge, Yong7,8; Chen, Jin5,6; Ling, Feng4; Wang, Qunming3; Du, Delin1; Xiang, Ru8
刊名ISCIENCE
出版日期2023-06-16
卷号26期号:6页码:106875
DOI10.1016/j.isci.2023.106875
产权排序1
文献子类Article
英文摘要Super-resolution mapping (SRM) is a critical technology in remote sensing. Recently, several deep learning models have been developed for SRM. Most of these models, however, only use a single stream to process remote sensing images and mainly focus on capturing spectral features. This can undermine the quality of the resulting maps. To address this issue, we propose a soft information-constrained network (SCNet) for SRM that leverages spatial transition features represented by soft information as a spatial prior. Our network incorporates a separate branch to process prior spatial features for feature enhancement. SCNet can extract multi-level feature representations simultaneously from both remote sensing images and prior soft information and hierarchically incorporate features from soft information into image features. Experimental results on three datasets demonstrate that SCNet generates more complete spatial details in complex areas, providing an effective means for producing high-quality and high-resolution mapping products from remote sensing images.
WOS关键词PIXEL ; INFORMATION ; NETWORKS
WOS研究方向Science & Technology - Other Topics
WOS记录号WOS:001018669900001
出版者CELL PRESS
源URL[http://ir.igsnrr.ac.cn/handle/311030/194381]  
专题资源与环境信息系统国家重点实验室_外文论文
作者单位1.Tongji Univ, Coll Surveying & Geoinformat, 1239 Siping Rd, Shanghai 200092, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Reg Sustainable Dev Modeling, Beijing 100101, Peoples R China
3.Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Key Lab Monitoring & Estimate Environm & Disaster, Wuhan 430077, Peoples R China
4.Beijing Normal Univ, Fac Geog Sci, Beijing Engn Res Ctr Global Land Remote Sensing Pr, Beijing 100875, Peoples R China
5.Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
6.Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing 210023, Peoples R China
7.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
8.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Xining,Ge, Yong,Chen, Jin,et al. High-quality super-resolution mapping using spatial deep learning[J]. ISCIENCE,2023,26(6):106875.
APA Zhang, Xining.,Ge, Yong.,Chen, Jin.,Ling, Feng.,Wang, Qunming.,...&Xiang, Ru.(2023).High-quality super-resolution mapping using spatial deep learning.ISCIENCE,26(6),106875.
MLA Zhang, Xining,et al."High-quality super-resolution mapping using spatial deep learning".ISCIENCE 26.6(2023):106875.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。