中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
生物运动多层级加工的认知神经机制:经颅磁刺激研究

文献类型:学位论文

作者孙中菊
答辩日期2023-06
文献子类硕士
授予单位中国科学院大学
授予地点中国科学院心理研究所
其他责任者王蕊
关键词生物运动 经颅磁刺激 颗上区 局部生物运动 社会性注意
学位名称理学硕士
学位专业应用心理
其他题名The neural mechanisms of biological motion multilevel brocessing: a transcranial magnetic stimulation study
中文摘要Our visual system is highly sensitive to the movements of biological entities. Biological motion (BM) carries a wealth of biologically and socially relevant information including direction, shape, identity, emotion and intention. The ability to recognize and decipher these signals is essential for human survival and social life. BM processing involves multiple levels, from sensory perception to social cognition. At perceptual level, recent work has suggested that BM perception is primarily built on our visual experience gained from long-term interactions with other creatures throughout evolution, which closely relates to the superior perceptual processing of local kinematics. However, the neural basis of local BM processing is poorly understood. On the other hand, BM signals have certain social functions. For example, the walking direction of BM, like eye gaze, acts as a social cue and induces reflexive attentional orienting effect. But it remains equivocal whether social attention triggered by different social cues is driven by a common neural substrate and whether it is qualitatively distinct from non-social attention. A number of studies highlight a critical role of superior temporal cortex (STS/STG) in processing bio-social information. In spite of some neuroimaging evidence, the causal contributions of this region to multilevel BM processing remain largely unknown. To address these questions, this project combined psychophysics, brain imaging and transcranial magnetic stimulation (TMS) techniques to explore the specific brain mechanisms underlying BM processing from the perspectives of perception and function. We targeted two main questions: (1) The neural basis of local BM processing; (2) The specific neural module of social attention. Here we focused on the role of the right posterior superior temporal cortex in BM multilevel processing. In study 1 we investigated the causal contributions of cortical areas to BM, especially local BM perception. In particular, TMS targeted two motion-sensitive regions, the posterior superior temporal sulcus (pSTS) and medial temporal area (MT+) in the right hemisphere, which were functionally localized at individual level. Observers were asked to perform a motion direction discrimination task on intact BM, scrambled BM and simple coherent motion, respectively. Our results showed that TMS over pSTS impaired the direction discrimination of intact BM, whereas TMS over MT+disrupted the perception of simple coherent motion but not intact BM. However, there was no any significant impairment observed on direction discrimination of scrambled BM following stimulation over either site. These findings indicate a unique process of local BM which is likely to be achieved at an early stage of visual processing. Study 2 aimed to examine the functional specialization of the superior temporal cortex in social attention. Using a modified central cueing paradigm, we evaluated whether TMS over the right posterior superior temporal gyrus (pSTG) impairs the attentional effect induced by different types of cues, that is social cues (i.e., eye gaze and BM) vs. non-social cues (i.e., arrows). Our results demonstrated that both social and non-social cues exerted reflexive attentional orienting. Cueing effects elicited by eye gaze and BM were simultaneously reduced following pSTG stimulation, while arrow cueing effect remained unaffected. These findings reveal that social attention induced by different types of cues might share a common neural substrate, which is distinct from non-social attention. Taken together, our work provides direct evidence for the specific neural mechanisms undergirding the complex cognitive processes of BM signals, which advances our understanding of bio-social information processing.
英文摘要人类对运动信息十分敏感,尤其是生物体的运动。生物运动既携带了形状体态、运动方向等生物学特征,又能提供身份、情绪和意图等具有社会意义的信息。迅速而准确地识别和理解这些信息对物种的生存发展和社会交往至关重要。生物运动加工涉及从感知觉到社会认知等多个层级。在知觉层面,近些年研究表明生物运动信息的感知能力来源于进化过程中对环境的适应,因此存在特异性的认知加工优势。该能力很大程度上依赖于对生命体特有的动态线索的加工。然而对于局部生物运动加工的神经机制了解仍十分有限。另一方面,生物运动信息具有一定社会功能,例如生物运动的行走方向可以像眼睛注视方向一样诱发反射性的社会性注意效应,影响人们的行为反应。不同社会线索诱发的注意效应是否由共同的脑机制驱动?是否特异于非社会性注意?这些问题仍亚待解决。多项研究显示颗上区(STS/STG)是加工生物社会信息的特异性脑区。尽管神经影像学研究为此提供了部分相关性证据,但颗上区在生物运动多层级加工中所起的具体作用仍需要更多直接的神经证据来支持。 针对以上问题,本项目结合心理物理学、脑成像以及经颅磁刺激技术,分别从知觉层级和功能层级两个方面提供生物运动特异性加工的证据,旨在探讨两个关键科学问题:(1)局部生物运动的神经机制;(2)社会性注意的特异性神经机制。重点关注右侧颗上区后部在生物运动信息加工中所起的作用。 研究一考察皮层区域在生物运动知觉加工尤其是局部生物运动中所起的作用。研究采用运动方向辨别任务,通过个体化功能定位,选择性抑制与生物运动知觉相关的重要脑区右侧颗上沟后部(pSTS)和颗中区(MT+),观察不同类型运动知觉加工所受到的影响。实验结果表明,抑制pSTS会干扰完整生物运动知觉加工,抑制MT+影响一般性运动(如随机点运动)的加工,却不影响完整生物运动加工。然而抑制这些皮层区域均未对局部生物运动方向辨别能力产生显著影响。该研究提示局部生物运动知觉存在独特的加工机制,可能在视觉加工更早期阶段完成。 研究二旨在检验颗上区是否是加工社会性注意的特异性脑区。研究采用中央线索范式,考察抑制右侧颗上回后部(pSTG)对社会线索(眼睛注视、生物运动)和非社会线索(如箭头)诱发的注意效应的影响。实验结果表明,眼睛注视、生物运动以及箭头方向信息均能诱发注意定向,抑制pSTG会同时削弱眼睛注视线索和生物运动线索诱发的注意效应,却不影响箭头线索诱发的注意效应。这一发现揭示了不同视觉线索诱发的社会性注意存在共享的脑机制,并且特异于非社会性注意。 综上所述,本项目结合行为学与神经调控技术,从知觉加工和社会性功能两个角度为生物运动的特异性加工提供了直接证据,有助于加深我们对生物社 会信息加工的神经机制的理解。
语种中文
源URL[http://ir.psych.ac.cn/handle/311026/45200]  
专题心理研究所_认知与发展心理学研究室
推荐引用方式
GB/T 7714
孙中菊. 生物运动多层级加工的认知神经机制:经颅磁刺激研究[D]. 中国科学院心理研究所. 中国科学院大学. 2023.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。