Learning pose-invariant 3D object reconstruction from single-view images
文献类型:期刊论文
作者 | Bo Peng1,2![]() ![]() ![]() ![]() |
刊名 | Neurocomputing
![]() |
出版日期 | 2021 |
卷号 | 423页码:407-418 |
关键词 | Learning 3D shape, Single view supervision, Domain confusion, Adversarial learning |
英文摘要 | Learning to reconstruct 3D shapes using 2D images is an active research topic, with benefits of not requir- |
源URL | [http://ir.ia.ac.cn/handle/173211/51545] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | Wei Wang; Jing Dong |
作者单位 | 1.Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, Shenzhen 518060, China 2.Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of Automation Chinese Academy of Sciences (CASIA), Beijing 100190, China |
推荐引用方式 GB/T 7714 | Bo Peng,Wei Wang,Jing Dong,et al. Learning pose-invariant 3D object reconstruction from single-view images[J]. Neurocomputing,2021,423:407-418. |
APA | Bo Peng,Wei Wang,Jing Dong,&Tieniu Tan.(2021).Learning pose-invariant 3D object reconstruction from single-view images.Neurocomputing,423,407-418. |
MLA | Bo Peng,et al."Learning pose-invariant 3D object reconstruction from single-view images".Neurocomputing 423(2021):407-418. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。