中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Flexible and Efficient Loop Closure Detection Based on Motion Knowledge

文献类型:会议论文

作者Liu BX(刘秉熙)2,3; Tang FL(唐付林)2; Fu YJ(傅禹杰)2,3; Yang YQ(杨彦群)1; Wu YH(吴毅红)2,3
出版日期2021-05
会议日期2021年5月31日-2021年6月4日
会议地点西安
英文摘要

Abstract—Loop closure detection (LCD) is an essential module
for simultaneous localization and mapping (SLAM), which
can correct accumulated errors after long-term explorations.
The widely used bag-of-words (BoW) model can not satisfy
well the requirements of both low time consumption and high
accuracy for a mobile platform. In this paper, we propose a
novel LCD algorithm based on motion knowledge. We give a
flexible and efficient detection strategy and also give flexible and
efficient combinations of a global binary feature extracted by
convolutional neural network (CNN) and a hand-crafted local
binary feature. We take a continuous motion model, grid-based
motion statistics (GMS) and motion states as motion knowledge.
Furthermore, we fuse the proposed LCD with a visual-inertial
odometry (VIO) system to correct localization errors by a pose
graph optimization. Comparative experiments with state-of-theart
LCD algorithms on typical datasets have been carried out,
and the results demonstrate that our proposed method achieves
quite high recall rates and quite high speed at 100% precision.
Moreover, experimental results from VIO further validate the
effectiveness of the proposed method.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/51546]  
专题多模态人工智能系统全国重点实验室
通讯作者Tang FL(唐付林)
作者单位1.山西焦煤集团股份有限公司创新技术中心
2.中国科学院自动化研究所
3.中国科学院大学
推荐引用方式
GB/T 7714
Liu BX,Tang FL,Fu YJ,et al. A Flexible and Efficient Loop Closure Detection Based on Motion Knowledge[C]. 见:. 西安. 2021年5月31日-2021年6月4日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。