中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Kernel-Based State-Space Kriging for Predictive Control

文献类型:期刊论文

作者A. Daniel Carnerero; Daniel R. Ramirez; Daniel Limon; Teodoro Alamo
刊名IEEE/CAA Journal of Automatica Sinica
出版日期2023
卷号10期号:5页码:1263-1275
关键词Data-driven methods model identification Kernel methods predictive control
ISSN号2329-9266
DOI10.1109/JAS.2023.123459
英文摘要In this paper, we extend the state-space kriging (SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions as linear combinations of past outputs. To model the nonlinear dynamics of the system, we propose the kernel-based state-space kriging (K-SSK), a new version of the SSK where kernel functions are used instead of resorting to considerations about the locality of the data. Also, a Kalman filter can be used to improve the predictions at each time step in the case of noisy measurements. A constrained tracking nonlinear model predictive control (NMPC) scheme using the black-box input-output model obtained by means of the K-SSK prediction method is proposed. Finally, a simulation example and a real experiment are provided in order to assess the performance of the proposed controller.
源URL[http://ir.ia.ac.cn/handle/173211/51560]  
专题自动化研究所_学术期刊_IEEE/CAA Journal of Automatica Sinica
推荐引用方式
GB/T 7714
A. Daniel Carnerero,Daniel R. Ramirez,Daniel Limon,et al. Kernel-Based State-Space Kriging for Predictive Control[J]. IEEE/CAA Journal of Automatica Sinica,2023,10(5):1263-1275.
APA A. Daniel Carnerero,Daniel R. Ramirez,Daniel Limon,&Teodoro Alamo.(2023).Kernel-Based State-Space Kriging for Predictive Control.IEEE/CAA Journal of Automatica Sinica,10(5),1263-1275.
MLA A. Daniel Carnerero,et al."Kernel-Based State-Space Kriging for Predictive Control".IEEE/CAA Journal of Automatica Sinica 10.5(2023):1263-1275.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。