MFFNet: Multi-Receptive Field Fusion Net for Microscope Steel Grain Grading
文献类型:会议论文
作者 | Sun JX(孙嘉玺)1,3![]() ![]() ![]() ![]() ![]() |
出版日期 | 2022 |
会议日期 | 2022年10月3-5日 |
会议地点 | 中国北京 |
关键词 | grain size metallographic steel images computer vision multiple receptive field convolutional kernel |
DOI | 10.1145/3571662.3571670 |
页码 | 49–55 |
英文摘要 | The grain size is an important steel grading parameter. For metallographic steel images with various grain sizes and complex textures, it is not possible for a human expert to determine the grain size efficiently. Meanwhile, conventional computer vision models are designed based on general images and they are not capable of achieving high performance in metallographic steel grain size recognition. To solve these problems, a method based on multiple receptive field fusion is proposed. A multi-scale convolutional net is used to extract information of microstructures in various scales. In addition, to augment the extracted features, a self-attention module is used to improve the robustness of feature representation with complex metallographic textures. At last, via a multiple feature fusion module, the data capacity is extended by projecting features into multiple hidden spaces. A comprehensive experiment was conducted on the Huawei Cloud Dataset and the classification accuracy was improved by 27% compared with other SOTA models, while our computation cost was only 0.06 GFLOPs |
会议录 | 2022 the 8th International Conference on Communication and Information Processing
![]() |
语种 | 英语 |
URL标识 | 查看原文 |
源URL | [http://ir.ia.ac.cn/handle/173211/51580] ![]() |
专题 | 模式识别国家重点实验室_三维可视计算 |
通讯作者 | Xu SB(徐士彪) |
作者单位 | 1.中国科学院大学人工智能学院 2.北京邮电大学人工智能学院 3.中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Sun JX,Zhang JG,Xu SB,et al. MFFNet: Multi-Receptive Field Fusion Net for Microscope Steel Grain Grading[C]. 见:. 中国北京. 2022年10月3-5日. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。