Learning Greenhouse Climate Control Policy from Monitored Data
文献类型:会议论文
作者 | Xiaoxuan Zhao![]() ![]() ![]() ![]() ![]() |
出版日期 | 2022 |
会议日期 | Nov. 25 - 27, 2022 |
会议地点 | 厦门 · China |
页码 | 6731-6736 |
英文摘要 | The knowledge of solar greenhouse growers on environment control plays an important role in greenhouse production and management. We proposed a way to extract the control strategies from the monitored data of greenhouses by building a long short-term memory (LSTM) model. The result is verifified according to the real monitored data of a solar greenhouse, which shows that the model can learn the control strategy of a ventilator in the solar greenhouse. Through monitored data and models, the knowledge of greenhouse ventilation control can be learned, and automatic control can be achieved in a greenhouse with a similar confifiguration |
产权排序 | 2 |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/51585] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
作者单位 | 中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Xiaoxuan Zhao,Haoyu Wang,Xiujuan Wang,et al. Learning Greenhouse Climate Control Policy from Monitored Data[C]. 见:. 厦门 · China. Nov. 25 - 27, 2022. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。