Temporal Memory Attention for Video Semantic Segmentation
文献类型:会议论文
作者 | Wang, Hao; Wang, Weining![]() ![]() |
出版日期 | 2021 |
会议日期 | 2021 |
会议地点 | 线上 |
关键词 | video semantic segmentation memory self-attention |
英文摘要 | Video semantic segmentation requires to utilize the complex temporal relations between frames of the video sequence. Previous works usually exploit accurate optical flow to leverage the temporal relations, which suffer much from heavy computational cost. In this paper, we propose a Temporal Memory Attention Network (TMANet) to adaptively integrate the long-range temporal relations over the video sequence based on the self-attention mechanism without exhaustive optical flow prediction. Specially, we construct a memory using several past frames to store the temporal information of the current frame. We then propose a temporal memory attention module to capture the relation between the current frame and the memory to enhance the representation of the current frame. Our method achieves new state-of-theart performances on two challenging video semantic segmentation datasets, particularly 80.3% mIoU on Cityscapes and 76.5% mIoU on CamVid with ResNet-50. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/51600] ![]() |
专题 | 紫东太初大模型研究中心 |
作者单位 | 中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Wang, Hao,Wang, Weining,Liu, Jing. Temporal Memory Attention for Video Semantic Segmentation[C]. 见:. 线上. 2021. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。