Doubly Semi-Supervised Multimodal Adversarial Learning for Classification, Generation and Retrieval
文献类型:会议论文
作者 | Du CD(杜长德)1![]() ![]() |
出版日期 | 2019 |
会议日期 | 2019/7/8 |
会议地点 | 上海 |
英文摘要 | Learning over incomplete multi-modality data is a challenging problem with strong practical applications. Most existing multi-modal data imputation approaches have two limitations: (1) they are unable to accurately control the semantics of imputed modalities; and (2) without a shared low-dimensional latent space, they do not scale well with multiple modalities. To overcome the limitations, we propose a novel doubly semi-supervised multi-modal learning framework (DSML) with a modality-shared latent space and modality-specific generators, encoders and classifiers. We design novel softmax-based discriminators to train all modules adversarially. As a unified framework, DSML can be applied in multi-modal semi-supervised classification, missing modality imputation and fast cross-modality retrieval tasks simultaneously. Experiments on multiple datasets demonstrate its advantages. |
源文献作者 | IEEE |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/51623] ![]() |
专题 | 类脑智能研究中心_神经计算及脑机交互 |
通讯作者 | He HG(何晖光) |
作者单位 | 1.Institute of Automation,Chinese Academy of Sciences 2.Huawei Noah’s Ark Lab, Beijing, China |
推荐引用方式 GB/T 7714 | Du CD,Du CY,He HG. Doubly Semi-Supervised Multimodal Adversarial Learning for Classification, Generation and Retrieval[C]. 见:. 上海. 2019/7/8. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。