中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
FreConv: Frequency Branch-and-Integration Convolutional Networks

文献类型:会议论文

作者Li CW(李朝闻)1,2; Zhao X(赵旭)1,2; Ding PG(丁培耕)1,2; Gao ZX(高宗鑫)1,2; Yang YT(杨雨婷)1,2; Tang M(唐明)1,2; Wang JQ(王金桥)1,2; Li ZW(李朝闻)
出版日期2023
会议日期布里斯班
会议地点2023-7-10 至 2023-7-15
英文摘要

Recent researches indicate that utilizing the frequency information of input data can enhance the performance of networks. However, the existing popular convolutional structure is not designed specifically for utilizing the frequency information contained in datasets. In this paper, we propose a novel and effective module, named FreConv (frequency branch-and-integration convolution), to replace the vanilla convolution. FreConv adopts a dual-branch architecture to extract and integrate high- and low-frequency information. In the high-frequency branch, a derivative-filter-like architecture is designed to extract the highfrequency information while a light extractor is employed in the low-frequency branch because the low-frequency information is usually redundant. FreConv is able to exploit the frequency information of input data in a more reasonable way to enhance feature representation ability and reduce the memory and computational cost significantly. Without any bells and whistles, experimental results on various tasks demonstrate that FreConv-equipped networks consistently outperform state-of-the-art baselines

源URL[http://ir.ia.ac.cn/handle/173211/51635]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
紫东太初大模型研究中心
作者单位1.中国科学院自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
Li CW,Zhao X,Ding PG,et al. FreConv: Frequency Branch-and-Integration Convolutional Networks[C]. 见:. 2023-7-10 至 2023-7-15. 布里斯班.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。