中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
3D Object Detection Using Scale Invariant and Feature Reweighting Networks

文献类型:会议论文

作者Zhao, Xin1; Liu, Zhe2; Hu, Ruolan2; Huang, Kaiqi1
出版日期2019
会议日期2019
会议地点USA
英文摘要

3D object detection plays an important role in a large number of real-world applications. It requires us to estimate the localizations and the orientations of 3D objects in real scenes. In this paper, we present a new network architecture which focuses on utilizing the front view images and frustum point clouds to generate 3D detection results. On the one hand, a PointSIFT module is utilized to improve the performance of 3D segmentation. It can capture the information from different orientations in space and the robustness to different scale shapes. On the other hand, our network obtains the useful features and suppresses the features with less information by a SENet module. This module reweights channel features and estimates the 3D bounding boxes more effectively. Our method is evaluated on both KITTI dataset for outdoor scenes and SUN-RGBD dataset for indoor scenes. The experimental results illustrate that our method achieves better performance than the state-of-the-art methods especially when point clouds are highly sparse.

源URL[http://ir.ia.ac.cn/handle/173211/51640]  
专题智能系统与工程
通讯作者Liu, Zhe
作者单位1.Center for Research on Intelligent System and Engineering Institute of Automation, Chinese Academy of Sciences
2.Huazhong University of Science and Technology
推荐引用方式
GB/T 7714
Zhao, Xin,Liu, Zhe,Hu, Ruolan,et al. 3D Object Detection Using Scale Invariant and Feature Reweighting Networks[C]. 见:. USA. 2019.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。