A novel mothed for EEG motor imagery classification with graph convolutional network
文献类型:会议论文
作者 | Qu, Zongfu2![]() ![]() |
出版日期 | 2023-01 |
会议日期 | 2022-8 |
会议地点 | 中国广州 |
英文摘要 | A motor imagery brain-computer interface system with practical application value should be able to show stable performance when facing new users. The distribution of electrodes on the cerebral cortex is the same for any user. Therefore, in order to solve the subject-independent problem, we propose a novel Graph Convolutional Convolution Transformer Net (GCCTN), which uses a graph convolutional neural network to calculate the relationship between an electrode and other electrodes, uses a convolutional neural network to extract temporal and spatial information and uses a Transformer Encoder for further extraction of time-domain information. Finally, the classification accuracy of our model is optimal. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/51730] ![]() |
专题 | 国家专用集成电路设计工程技术研究中心_前瞻芯片研制与测试团队 |
通讯作者 | Qu, Zongfu |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.School of Artificial Intelligence, University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Qu, Zongfu,Yin, Zhigang,Yang, Luo. A novel mothed for EEG motor imagery classification with graph convolutional network[C]. 见:. 中国广州. 2022-8. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。