中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning Hierarchical Graph Convolutional Neural Network for Object Navigation

文献类型:会议论文

作者Tao Xu1,2; Xu Yang1,2; Suiwu Zheng1,2,3
出版日期2022-09
会议日期2022年9月6日-2022年9月9日
会议地点西英格兰大学计算机科学与创新技术系
DOI10.1007/978-3-031-15931-2_45
英文摘要

The goal of object navigation is to navigate an agent to a target object using visual input. Without GPS and the map, one challenge of this task is how to locate the target object in the unseen environment, especially when the target object is not in the field of view. Previous works use relation graphs to encode the concurrence relationships among all the object categories, but these relation graphs are usually too flat for the agent to locate the target object efficiently. In this paper, a Hier archical Graph Convolutional Neural Network (HGCNN) is proposed to encode the object relationships in a hierarchical manner. Specifically, the HGCNN consists of two graph convolution blocks and a graph pooling block, which constructs the hierarchical relation graph by learning an area-level graph from the object-level graph. Consequently, the HGCNN based framework enables the agent to locate the target object efficiently in the unseen environment. The proposed model is evaluated in the AI2-iTHOR environment, and the performance of object navigation shows a significant improvement.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/51847]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
通讯作者Suiwu Zheng
作者单位1.State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2.University of Chinese Academy of Sciences, Beijing, China
3.Huizhou Zhongke Advanced Manufacturing Limited Company, Huizhou, China
推荐引用方式
GB/T 7714
Tao Xu,Xu Yang,Suiwu Zheng. Learning Hierarchical Graph Convolutional Neural Network for Object Navigation[C]. 见:. 西英格兰大学计算机科学与创新技术系. 2022年9月6日-2022年9月9日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。