中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Improving the Ability of Robots to Navigate Through Crowded Environments Safely using Deep Reinforcement Learning

文献类型:会议论文

作者Shan QF(单钦锋)1,2,3; Wang WJ(王伟杰)1,2,3; Guo DF(郭丁飞)2,3; Sun XR(孙向荣)2,3; Jia LH(贾立好)2,3
出版日期2022-11-29
会议日期2022-7-9
会议地点中国桂林
关键词Deep learning Mechatronics Navigation Reinforcement learning Cost function Real-time systems Trajectory
DOI10.1109/ICARM54641.2022.9959459
英文摘要

Autonomous robot navigation in unpredictable and crowded environments requires a guarantee of safety and a stronger ability to pass through a narrow passage. However, it’s challenging to plan safe, dynamically-feasible trajectories in real-time. Previous approaches, such as Reachability-based Trajectory Design (RTD), focus on safety guarantee, but the lack of online strategy always makes the robot fail to pass through a narrow passage. This paper proposes to learn a policy that guides the robot to make successful plans using deep Reinforcement Learning (RL). We train a deep network based on the RTD method to create cost functions in realtime. The created cost function is expected to help the online planner optimize the robot’s feasible trajectory, satisfying its kino-dynamics model and collision avoidance constraints. In crowded simulated environments, our approach substantially improves the planning success rate compared to RTD and some other methods.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/51898]  
专题多模态人工智能系统全国重点实验室
通讯作者Jia LH(贾立好)
作者单位1.中国科学院大学人工智能学院
2.中国科学院香港创新研究院人工智能与机器人创新中心
3.中国科学院自动化研究所
推荐引用方式
GB/T 7714
Shan QF,Wang WJ,Guo DF,et al. Improving the Ability of Robots to Navigate Through Crowded Environments Safely using Deep Reinforcement Learning[C]. 见:. 中国桂林. 2022-7-9.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。