中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Pseudo graph convolutional network for vehicle reid

文献类型:会议论文

作者Wen Qian1,3; Zhiqun He2; Silong Peng1,3; Chen Chen3
出版日期2021-10
会议日期2021-10
会议地点中国成都
英文摘要

Image-based Vehicle ReID methods have suffered from limited information caused by viewpoints, illumination, and occlusion as they usually use a single image as input. Graph convolutional methods (GCN) can alleviate the aforementioned problem by aggregating neighbor samples' information to enhance the feature representation. However, it's uneconomical and computational for the inference processes of GCN-based methods since they need to iterate over all samples for searching the neighbor nodes. In this paper, we propose the first Pseudo-GCN Vehicle ReID method (PGVR) which enables a CNN-based module to performs competitively to GCN-based methods and has a faster and lightweight inference process. To enable the Pseudo-GCN mechanism, a two-branch network and a graph-based knowledge distillation are proposed. 

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/51912]  
专题自动化研究所_智能制造技术与系统研究中心_多维数据分析团队
通讯作者Chen Chen
作者单位1.中国科学院大学
2.商汤科技
3.自动化所
推荐引用方式
GB/T 7714
Wen Qian,Zhiqun He,Silong Peng,et al. Pseudo graph convolutional network for vehicle reid[C]. 见:. 中国成都. 2021-10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。