中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Motion optimization for a robotic fish based on adversarial structured control

文献类型:会议论文

作者Yan, Shuaizheng1,2; Wang, Jian1,2; Wu, Zhengxing1,2; Yu, Junzhi1,3; Tan, Min1,2
出版日期2020-01
会议日期2019年12月6日-2019年12月8日
会议地点Dali, China
英文摘要

This paper proposes a task-based control optimization method for the robotic fish. It is essentially an adversarial structured control consisting of a global control module and a local compensation control module. In detail, the global control module emulates an optimized central pattern generator with Evolutionary Strategy, while the local control module produces targeted compensation control signals with Soft Actor-Critic. The linear summation of two control laws works for the final robotic fish control. Considering that the evolutionary computation optimization algorithms generally have the defect of falling into the local optimum, we propose a method of antagonistic training to improve the optimization performance. The effectiveness of the designed controller is validated by simulation on agents in Mujoco. Noticeably, the simulation results demonstrate that the proposed method teaches the agent fish to move to any target point with a low energy consumption, which lays a good foundation for application of reinforcement learning in real robotic fish control.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/51951]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
通讯作者Wu, Zhengxing
作者单位1.State Key Lab Management and Control for Complex Systems, Institute of Automation, CAS
2.University of Chinese Academy of Sciences
3.Dept. Mech. Eng. Sci., BIC-ESAT, College of Engineering, Peking University
推荐引用方式
GB/T 7714
Yan, Shuaizheng,Wang, Jian,Wu, Zhengxing,et al. Motion optimization for a robotic fish based on adversarial structured control[C]. 见:. Dali, China. 2019年12月6日-2019年12月8日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。