Augmenting Slot Values and Contexts for Spoken Language Understanding with Pretrained Models
文献类型:会议论文
作者 | Lin, Haitao1,3![]() ![]() ![]() ![]() ![]() |
出版日期 | 2021-09 |
会议日期 | 2021-08-30 - 2021-09-03 |
会议地点 | Brno, Czechia |
页码 | 4703-4707 |
英文摘要 | Spoken Language Understanding (SLU) is one essential step in building a dialogue system. Due to the expensive cost of obtaining the labeled data, SLU suffers from the data scarcity problem. Therefore, in this paper, we focus on data augmentation for slot filling task in SLU. To achieve that, we aim at generating more diverse data based on existing data. Specifically, we try to exploit the latent language knowledge from pretrained language models by finetuning them. We propose two strategies for finetuning process: value-based and context-based augmentation. Experimental results on two public SLU datasets have shown that compared with existing data augmentation methods, our proposed method can generate more diverse sentences and significantly improve the performance on SLU. |
会议录 | Proceedings of Interspeech 2021
![]() |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/51973] ![]() |
专题 | 模式识别国家重点实验室_自然语言处理 |
通讯作者 | Zhou, Yu |
作者单位 | 1.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China 2.Fanyu AI Laboratory, Beijing Fanyu Technology Co., Ltd, Beijing, China 3.School of Artificial Intelligence, University of Chinese Academy of Sciences, China |
推荐引用方式 GB/T 7714 | Lin, Haitao,Xiang, Lu,Zhou, Yu,et al. Augmenting Slot Values and Contexts for Spoken Language Understanding with Pretrained Models[C]. 见:. Brno, Czechia. 2021-08-30 - 2021-09-03. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。