中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Augmenting Slot Values and Contexts for Spoken Language Understanding with Pretrained Models

文献类型:会议论文

作者Lin, Haitao1,3; Xiang, Lu1,3; Zhou, Yu1,2,3; Zhang, Jiajun1,3; Zong, Chengqing1,3
出版日期2021-09
会议日期2021-08-30 - 2021-09-03
会议地点Brno, Czechia
页码4703-4707
英文摘要

Spoken Language Understanding (SLU) is one essential step in building a dialogue system. Due to the expensive cost of obtaining the labeled data, SLU suffers from the data scarcity problem. Therefore, in this paper, we focus on data augmentation for slot filling task in SLU. To achieve that, we aim at generating more diverse data based on existing data. Specifically, we try to exploit the latent language knowledge from pretrained language models by finetuning them. We propose two strategies for finetuning process: value-based and context-based augmentation. Experimental results on two public SLU datasets have shown that compared with existing data augmentation methods, our proposed method can generate more diverse sentences and significantly improve the performance on SLU.

会议录Proceedings of Interspeech 2021
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/51973]  
专题模式识别国家重点实验室_自然语言处理
通讯作者Zhou, Yu
作者单位1.State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2.Fanyu AI Laboratory, Beijing Fanyu Technology Co., Ltd, Beijing, China
3.School of Artificial Intelligence, University of Chinese Academy of Sciences, China
推荐引用方式
GB/T 7714
Lin, Haitao,Xiang, Lu,Zhou, Yu,et al. Augmenting Slot Values and Contexts for Spoken Language Understanding with Pretrained Models[C]. 见:. Brno, Czechia. 2021-08-30 - 2021-09-03.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。