中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution

文献类型:会议论文

作者Yunpeng Bai2,3; Chen Gong1,3,4; Bin Zhang2,3; Guoliang Fan2,3; Xinwen Hou1,3; Yu Liu1,3
出版日期2022-07
会议日期18-23 July 2022
会议地点Padua, Italy
英文摘要

Recent years have witnessed the great success of multi-agent systems (MAS). 
Value decomposition, which decomposes joint action values into individual action values, has been an important work in MAS. 
However, many value decomposition methods ignore the coordination among different agents, leading to the notorious ``lazy agents'' problem.
To enhance the coordination in MAS, this paper proposes HyperGraph CoNvolution MIX(HGCN-MIX), a method that incorporates hypergraph convolution with value decomposition. HGCN-MIX models agents as well as their relationships as a hypergraph, where agents are nodes and hyperedges among nodes indicate that the corresponding agents can coordinate to achieve larger rewards. Then, it trains a hypergraph that can capture the collaborative relationships among agents. Leveraging the learned hypergraph to consider how other agents' observations and actions affect their decisions, the agents in a MAS can better coordinate.
We evaluate HGCN-MIX in the StarCraft II multi-agent challenge benchmark.
The experimental results demonstrate that HGCN-MIX can train joint policies that outperform or achieve a similar level of performance as the current state-of-the-art techniques. We also observe that HGCN-MIX has an even more significant improvement of performance in the scenarios with a large amount of agents. Besides, we conduct additional analysis to emphasize that when the hypergraph learns more relationships, HGCN-MIX can train stronger joint policies. 

会议录出版者IEEE
会议录出版地Padua, Italy
源URL[http://ir.ia.ac.cn/handle/173211/52008]  
专题复杂系统认知与决策实验室
通讯作者Yu Liu
作者单位1.Comprehensive information system research Center, Institute of Automation, Chinese Academy of Sciences
2.Fusion Innovation Center, Institute of Automation, Chinese Academy of Sciences
3.School of Artificial Intelligence, University of Chinese Academy of Sciences
4.School of Computing and Information Systems, Singapore Management University
推荐引用方式
GB/T 7714
Yunpeng Bai,Chen Gong,Bin Zhang,et al. Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution[C]. 见:. Padua, Italy. 18-23 July 2022.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。