中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SDALIE-GAN: Structure and Detail Aware GAN for Low-light Image Enhancement

文献类型:会议论文

作者Pang YX(庞有鑫)1,3; Yuan MK(袁梦轲)1,3; Chang YC(常玉春)2; Yan DM(严冬明)1,3
出版日期2021-10
会议日期2021-10
会议地点线上
英文摘要

We present a GAN-based network architecture for low-light image enhancement, called Structure and Detail Aware Low-light Image Enhancement GAN (SDALIE-GAN), which is trained with unpaired low/normal-light images. Specifically, complementary Structure Aware Generator (SAG) and Detail Aware Generator (DAG) are designed respectively to generate an enhanced low-light image. Besides, intermediate features from SAG and DAG are integrated through guided map supervised feature attention fusion module, and regularizes the generated samples with an appended intensity adjusting module. We demonstrate the advantages of the proposed approach by comparing it with state-of-the-art low-light image enhancement methods.

源URL[http://ir.ia.ac.cn/handle/173211/52153]  
专题多模态人工智能系统全国重点实验室
作者单位1.中科院自动化研究所
2.大连理工大学
3.中国科学院大学 人工智能学院
推荐引用方式
GB/T 7714
Pang YX,Yuan MK,Chang YC,et al. SDALIE-GAN: Structure and Detail Aware GAN for Low-light Image Enhancement[C]. 见:. 线上. 2021-10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。