SDALIE-GAN: Structure and Detail Aware GAN for Low-light Image Enhancement
文献类型:会议论文
作者 | Pang YX(庞有鑫)1,3![]() ![]() ![]() |
出版日期 | 2021-10 |
会议日期 | 2021-10 |
会议地点 | 线上 |
英文摘要 | We present a GAN-based network architecture for low-light image enhancement, called Structure and Detail Aware Low-light Image Enhancement GAN (SDALIE-GAN), which is trained with unpaired low/normal-light images. Specifically, complementary Structure Aware Generator (SAG) and Detail Aware Generator (DAG) are designed respectively to generate an enhanced low-light image. Besides, intermediate features from SAG and DAG are integrated through guided map supervised feature attention fusion module, and regularizes the generated samples with an appended intensity adjusting module. We demonstrate the advantages of the proposed approach by comparing it with state-of-the-art low-light image enhancement methods. |
源URL | [http://ir.ia.ac.cn/handle/173211/52153] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
作者单位 | 1.中科院自动化研究所 2.大连理工大学 3.中国科学院大学 人工智能学院 |
推荐引用方式 GB/T 7714 | Pang YX,Yuan MK,Chang YC,et al. SDALIE-GAN: Structure and Detail Aware GAN for Low-light Image Enhancement[C]. 见:. 线上. 2021-10. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。