Reflection Removal via Realistic Training Data Generation
文献类型:会议论文
作者 | Pang YX(庞有鑫)1,2![]() ![]() ![]() |
出版日期 | 2020-08 |
会议日期 | 2020-08 |
会议地点 | 线上 |
英文摘要 | We present a valid polarization-based reflection contaminated image synthesis method, which can provide adequate, diverse and authentic training dataset. Meanwhile, we enhance the neural network by introducing the reflection information as guidance and utilizing adaptive convolution kernel size to fuse multi-scale information. We demonstrate that the proposed approach achieves convincing improvements over state of the arts. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/52154] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
作者单位 | 1.中科院自动化研究所 2.中国科学院大学人工智能学院 3.King Abdullah University of Science and Technology |
推荐引用方式 GB/T 7714 | Pang YX,Yuan MK,Fu Q,et al. Reflection Removal via Realistic Training Data Generation[C]. 见:. 线上. 2020-08. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。