Fusing Knowledge and Experience with Graph Convolutional Network for Cross-task Learning in Visual Cognitive Development
文献类型:会议论文
作者 | Zhang XY(张昕悦)2![]() ![]() ![]() |
出版日期 | 2021-05 |
会议日期 | 2020-12 |
会议地点 | 珠海 |
英文摘要 | Visual cognitive ability is important for intelligent robots in unstructured and dynamic environments. The high reliance on large amounts of data prevents prior methods to handle this task. Therefore, we propose a model called knowledge-experience fusion graph (KEFG) network for novel inference. It exploits information from both knowledge and experience. With the employment of graph convolutional network (GCN), KEFG generates the predictive classifiers of the novel classes with few labeled samples. Experiments show that KEFG can decrease the training time by the fusion of the source information and also increase the classification accuracy in cross-task learning. |
源URL | [http://ir.ia.ac.cn/handle/173211/52162] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Yang X(杨旭) |
作者单位 | 1.美团 2.中国科学院自动化所 |
推荐引用方式 GB/T 7714 | Zhang XY,Yang X,Liu ZY,et al. Fusing Knowledge and Experience with Graph Convolutional Network for Cross-task Learning in Visual Cognitive Development[C]. 见:. 珠海. 2020-12. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。