面向日常饲养环境下猕猴行为的自动化分析技术研究
文献类型:学位论文
作者 | 刘梦实![]() |
答辩日期 | 2023-05 |
文献子类 | 硕士 |
关键词 | 计算行为学,日常饲养环境,猕猴,轨迹跟踪,行为识别 |
英文摘要 | 近年来,随着计算机视觉和动物行为学的持续发展,计算行为学作为新兴的交叉学科开发出很多动物行为的自动化分析系统。由于猕猴与人类拥有相似的大脑功能结构,其被作为研究神经科学等领域的重要实验动物模型。因此针对性地搭建日常饲养环境下猕猴的行为量化分析系统,可以为人们研究大脑和行为之间的关系提供更充足可靠的实验论证数据。相较于其它受控环境,采集猕猴的行为信息时,日常饲养环境下进行动物行为分析可以避免搭建新的观测环境,从而降低观测成本。同时,熟悉的环境可以降低猕猴行为因环境变化而受到的非自然因素干扰,减少实验数据中的噪音,保证行为分析结果的准确性。然而,目前能解决日常饲养环境下猕猴行为分析所面临的问题的系统相对缺乏。在日常饲养环境下的猕猴行为分析遇到的问题主要有三点:遮挡、环境变化频繁和猕猴运动时空间位移较大。本文针对上述的三个问题开展研究,并结合具体的主流算法模型作出针对性改进。本文主要研究内容和贡献总结如下: 1、实现了在日常饲养环境下稳定且准确的猕猴轨迹跟踪。目前已有的针对猕猴轨迹跟踪的方法分别基于传统图像处理或深度学习。两种方法通常需要特定的环境来减少遮挡或环境变化的干扰。本文提出了一种新颖的方法MonkeyTrail。该方法将帧差法和基于深度学习的模型(You Only Look Once,YOLO)相结合,频繁生成虚拟空背景,从而降低了环境变化的影响。在生成空背景后,该方法使用背景减除来精确地获取差异像素,即动物的前景区域,从而实现对动物的跟踪,其中差异像素不受网状遮挡干扰。为了测试MonkeyTrail的性能,本文将包含大约8 000帧视频图像的数据集(包含猕猴在各种条件下的表征)用于对比实验。结果表明,MonkeyTrail的跟踪精度和稳定性超过了两种基于深度学习的方法(YOLOv5和Single-Shot MultiBox Detector)、传统的帧差法和朴素背景减除法。 2、实现了在日常饲养环境下稳定且准确的猕猴行为识别。目前主流的行为识别模型中双流网络和基于Transformer的网络性能较好。但猕猴的日常饲养环境中具有金属反射光线的干扰信息,导致双流网络中的光流分支较难取得好的效果。同时,猕猴运动中的空间位移导致基于Transformer的方法在时间序列上缺失对运动部位的信息交互。受人类观察和判定行为时的基础逻辑启发,本文搭建了帧间运动区域注意模块(Inter-Frame Action-area Attention,IFAA),以重点关注猕猴的运动区域和运动趋势。该模块提出了用帧差信息多层次激活运动区域的设计,通过帧差增强帧间信息的交互,提高猕猴运动部位和运动趋势在空间上的注意力。同时,提高运动区域的注意力还能解决因遮挡而导致模型识别部分行为时准确性下降的问题。为了训练和测试模型,本文通过人工分析各猕猴的日常行为以及考虑猕猴行为学研究所关注的行为模式,选取出日常饲养环境下猕猴最常见的9类行为,最终制作了5小时左右的视频格式和原始帧格式的数据集。最后,通过消融实验、与主流模型进行性能比较以及可视化分析,本文验证了IFAA模块可以显著提升模型在猕猴行为识别任务上的性能表现。 3、搭建了面向日常饲养环境下猕猴运动行为的智能化自动分析系统并进行实用性验证。为了便于研究人员训练满足个性化需求的行为分析模型,本文搭建了自动化分析系统将视频数据量化分析的流程进行模块化。其中,每个模块都是方便调用的应用程序,包括数据集处理模块、算法训练和预测模块。同时为了满足低算力平台的应用需求,该系统还添加了蒸馏模块来降低模型预测时所占用的计算资源。为了评估系统的应用价值,本文用系统中的数据处理模块制作了大量的猕猴视频数据,并通过预测模块量化了这些数据,包括:(1)将2只猕猴的日常视频数据(1年间隔下各5天)量化为运动量和轨迹;(2)将7只猕猴短时间段内的视频数据量化为行为分布时间;(3)将1只正常猕猴和2只阿尔兹海默症疾病模型猴(造模前后各7天)的视频数据量化为特定行为的时间分布。上述数据的预测结果证明了系统可以为猕猴日常的行为模式状况提供常态化监测,以及为神经科学实验特殊关注的行为提供验证数据,具有较好的实用性。 综上所述,本文针对猕猴日常饲养环境下的遮挡、环境变化频繁和个体运动位移导致算法落地困难的问题进行了有效的算法设计,提出了在准确性和稳定性上都优于主流方法的轨迹跟踪方法和行为识别方法。另外,本文通过搭建行为分析系统来模块化整体的数据分析流程,并用系统对大量的日常行为数据和神经科学实验数据进行分析,验证了该系统具有较高的实用价值,使研究人员可以通过使用低成本的硬件便捷地进行个性化的数据分析。 |
语种 | 中文 |
页码 | 69 |
源URL | [http://ir.ia.ac.cn/handle/173211/52174] ![]() |
专题 | 毕业生_硕士学位论文 |
推荐引用方式 GB/T 7714 | 刘梦实. 面向日常饲养环境下猕猴行为的自动化分析技术研究[D]. 2023. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。