Label-informed Graph Structure Learning for Node Classification
文献类型:会议论文
作者 | Wang,Liping2,3![]() ![]() ![]() ![]() |
出版日期 | 2021 |
会议日期 | November 1–5, 2021 |
会议地点 | Virtual Event, Australia |
英文摘要 | Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategies to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines. |
源URL | [http://ir.ia.ac.cn/handle/173211/52181] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | Wu,Shu |
作者单位 | 1.Artificial Intelligence Research, Chinese Academy of Sciences 2.School of Artificial Intelligence, University of Chinese Academy of Sciences 3.Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Wang,Liping,Hu,Fenyu,Wu,Shu,et al. Label-informed Graph Structure Learning for Node Classification[C]. 见:. Virtual Event, Australia. November 1–5, 2021. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。