中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Knowledge Transfer from Situation Evaluation to Multi-agent Reinforcement Learning

文献类型:会议论文

作者Chen M(陈敏); Pu ZQ(蒲志强); Pan Y(潘一); Yi JQ(易建强)
出版日期2023-03
会议日期2022年11月22-2022年11月26
会议地点New Delhi, India
关键词Multi-agent reinforcement learning Transfer learning
英文摘要

Recently, multi-agent reinforcement learning (MARL) has achieved amazing performance on complex tasks. However, it still suffers from challenges of sparse rewards and contradiction between consistent cognition and policy diversity. In this paper, we propose novel methods for transferring knowledge from situation evaluation task to MARL task. Specifically, we utilize offline data from a single-agent scenario to train two situation evaluation models for: (1) constructing guiding dense rewards (GDR) in multi-agent scenarios to help agents explore real sparse rewards faster and jump out of locally optimal policies without changing the global optimal policy; (2) transferring a situation comprehension network (SCN) to multi-agent scenarios that balances the contradiction between consistent cognition and policy diversity among agents. Our methods can be easily combined with existing MARL methods. Empirical results show that our methods achieve state-of-the-art performance on Google Research Football which brings together above challenges.

会议录出版者Springer Nature Singapore
会议录出版地Singapore
源URL[http://ir.ia.ac.cn/handle/173211/52202]  
专题复杂系统认知与决策实验室
作者单位1.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
2.Institute of Automation, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Chen M,Pu ZQ,Pan Y,et al. Knowledge Transfer from Situation Evaluation to Multi-agent Reinforcement Learning[C]. 见:. New Delhi, India. 2022年11月22-2022年11月26.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。