Learning to Play Hard Exploration Games Using Graph-guided Self-navigation
文献类型:会议论文
作者 | Zhao EM(赵恩民)1,2![]() ![]() ![]() ![]() |
出版日期 | 2021-02 |
会议日期 | 2021-02 |
会议地点 | 线上 |
DOI | 无 |
英文摘要 | Thisworkconsiderstheproblemofdeeprein-
forcementlearning(RL)withlongtimedependenciesands-
parserewards,asarefoundinmanyhardexplorationgames.
Agraph-basedrepresentationisproposedtoallowanagent
toperformself-navigationforenvironmentalexploration.The
graphrepresentationnotonlyeffectivelymodelstheenvironment
structure,butalsoefficientlytracestheagentstatechangesand
thecorrespondingactions.Byencouragingtheagenttoearna
newinfluence-basedcuriosityrewardfornewgameobservations,
thewholeexplorationtaskisdividedintosub-tasks,whichare
effectivelysolvedusingaunifieddeepRLmodel.Experimental
evaluationsonhardexplorationAtariGamesdemonstratethe
effectivenessoftheproposedmethod.Thesourcecodeand
learnedmodelswillbereleasedtofacilitatefurtherstudieson
thisproblem. |
学科主题 | 信息科学与系统科学 |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/52241] ![]() |
专题 | 融合创新中心_决策指挥与体系智能 |
通讯作者 | Xing JL(兴军亮) |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.SchoolofArtificialIntelligence,UniversityofChineseAcademyofSciences |
推荐引用方式 GB/T 7714 | Zhao EM,Yan RY,Li K,et al. Learning to Play Hard Exploration Games Using Graph-guided Self-navigation[C]. 见:. 线上. 2021-02. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。