中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning to Play Hard Exploration Games Using Graph-guided Self-navigation

文献类型:会议论文

作者Zhao EM(赵恩民)1,2; Yan RY(闫仁业)1,2; Li K(李凯)1; Li LJ(李丽娟)1; Xing JL(兴军亮)1,2
出版日期2021-02
会议日期2021-02
会议地点线上
DOI
英文摘要
Thisworkconsiderstheproblemofdeeprein-
forcementlearning(RL)withlongtimedependenciesands-
parserewards,asarefoundinmanyhardexplorationgames.
Agraph-basedrepresentationisproposedtoallowanagent
toperformself-navigationforenvironmentalexploration.The
graphrepresentationnotonlyeffectivelymodelstheenvironment
structure,butalsoefficientlytracestheagentstatechangesand
thecorrespondingactions.Byencouragingtheagenttoearna
newinfluence-basedcuriosityrewardfornewgameobservations,
thewholeexplorationtaskisdividedintosub-tasks,whichare
effectivelysolvedusingaunifieddeepRLmodel.Experimental
evaluationsonhardexplorationAtariGamesdemonstratethe
effectivenessoftheproposedmethod.Thesourcecodeand
learnedmodelswillbereleasedtofacilitatefurtherstudieson
thisproblem.
学科主题信息科学与系统科学
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/52241]  
专题融合创新中心_决策指挥与体系智能
通讯作者Xing JL(兴军亮)
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.SchoolofArtificialIntelligence,UniversityofChineseAcademyofSciences
推荐引用方式
GB/T 7714
Zhao EM,Yan RY,Li K,et al. Learning to Play Hard Exploration Games Using Graph-guided Self-navigation[C]. 见:. 线上. 2021-02.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。