中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ReasonChainQA: Text-based Complex Question Answering with Explainable Evidence Chains

文献类型:会议论文

作者Zhu MJ(朱敏郡); Weng YX(翁诣轩); He SZ(何世柱); Liu K(刘康); Zhao J(赵军)
出版日期2022
会议日期2022
会议地点中国厦门
英文摘要

The ability of reasoning over evidence has received increasing attention in question answering (QA). Recently, natural language database (NLDB) conducts complex QA in knowledge base with textual evidences rather than structured representations, this task attracts a lot of attention because of the flexibility and richness of textual evidence. However, existing text-based complex question answering datasets fail to provide explicit reasoning process, while it's important for retrieval effectiveness and reasoning interpretability. Therefore, we present a benchmark ReasonChainQA with explanatory and explicit evidence chains. ReasonChainQA consists of two subtasks: answer generation and evidence chains extraction, it also contains higher diversity for multi-hop questions with varying depths, 12 reasoning types and 78 relations. To obtain high-quality textual evidences for answering complex question. Additional experiment on supervised and unsupervised retrieval fully indicates the significance of ReasonChainQA. Dataset and codes will be made publicly available upon accepted.

会议录出版者IEEE
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/52285]  
专题模式识别国家重点实验室_自然语言处理
通讯作者Zhao J(赵军)
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Zhu MJ,Weng YX,He SZ,et al. ReasonChainQA: Text-based Complex Question Answering with Explainable Evidence Chains[C]. 见:. 中国厦门. 2022.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。