中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
CRule: Category-Aware Symbolic Multi-Hop Reasoning on Knowledge Graphs

文献类型:期刊论文

作者Wang, Zikang; Li, Linjing; Li, Jinlin; Zhao, Pengfei; Zeng, Daniel
刊名IEEE Intelligent Systems
出版日期2023
页码1-9
英文摘要
Multi-hop reasoning is essential in knowledge graph (KG) research and applications. Current methods rely on specific KG entities, while human cognition operates at a more abstract level. This paper proposes a Category-aware Rule-based (CRule) approach for symbolic multi-hop reasoning. Specifically, given a KG, CRule first categorizes entities and constructs a category-aware KG, then uses rules retrieved from the categorized KG to perform multi-hop reasoning on the original KG. Experiments on five datasets show that CRule is simple, effective, and combines the advantages of symbolic and neural network methods. It overcomes symbolic reasoning’s complexity limitations, can perform reasoning on KGs of more than 300k edges, and can be three times more efficient than neural network models.
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/52343]  
专题舆论大数据科学与技术应用联合实验室
作者单位Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Wang, Zikang,Li, Linjing,Li, Jinlin,et al. CRule: Category-Aware Symbolic Multi-Hop Reasoning on Knowledge Graphs[J]. IEEE Intelligent Systems,2023:1-9.
APA Wang, Zikang,Li, Linjing,Li, Jinlin,Zhao, Pengfei,&Zeng, Daniel.(2023).CRule: Category-Aware Symbolic Multi-Hop Reasoning on Knowledge Graphs.IEEE Intelligent Systems,1-9.
MLA Wang, Zikang,et al."CRule: Category-Aware Symbolic Multi-Hop Reasoning on Knowledge Graphs".IEEE Intelligent Systems (2023):1-9.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。