Adaptive local approximation neural network control based on extraordinariness particle swarm optimization for robotic manipulators
文献类型:期刊论文
作者 | H. Y. Sai; Z. B. Xu; C. Xu; X. M. Wang; K. Wang and L. Zhu |
刊名 | Journal of Mechanical Science and Technology
![]() |
出版日期 | 2022 |
卷号 | 36期号:3页码:1469-1483 |
ISSN号 | 1738-494X |
DOI | 10.1007/s12206-022-0234-3 |
英文摘要 | In this paper, an adaptive radial basis function neural network (RBFNN) controller based on extraordinariness particle swarm optimization (EPSO) is proposed. To improve the trajectory tracking performance of robotic manipulators, the uncertainties of the manipulator dynamic equation are locally approximated using three RBFNNs with optimized hyperparameters. Besides, a robust control item is also considered in the controller to resist external disturbances. During hyperparameters optimization, the EPSO optimizer iteratively optimizes the hyperparameters of the RBFNN controller using the composite error of the system output. The stability of the control scheme is analyzed with the Lyapunov stability. Simulation results as well as the experimental verification prove the efficiency and applicability of the control scheme. |
URL标识 | 查看原文 |
语种 | 英语 |
源URL | [http://ir.ciomp.ac.cn/handle/181722/66384] ![]() |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | H. Y. Sai,Z. B. Xu,C. Xu,et al. Adaptive local approximation neural network control based on extraordinariness particle swarm optimization for robotic manipulators[J]. Journal of Mechanical Science and Technology,2022,36(3):1469-1483. |
APA | H. Y. Sai,Z. B. Xu,C. Xu,X. M. Wang,&K. Wang and L. Zhu.(2022).Adaptive local approximation neural network control based on extraordinariness particle swarm optimization for robotic manipulators.Journal of Mechanical Science and Technology,36(3),1469-1483. |
MLA | H. Y. Sai,et al."Adaptive local approximation neural network control based on extraordinariness particle swarm optimization for robotic manipulators".Journal of Mechanical Science and Technology 36.3(2022):1469-1483. |
入库方式: OAI收割
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。