中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
微纳米颗粒掺杂改性Ni-P复合镀层的制备及性能研究

文献类型:学位论文

作者杜英超
答辩日期2021-06-01
文献子类博士
授予单位中国科学院过程工程研究所
导师叶树峰
关键词复合电沉积,电化学腐蚀,摩擦磨损,Ti3c2tx/mos2颗粒,复合镀层
英文摘要

在工业生产中,磨损和腐蚀是机械设备失效的主要形式,会带来资源浪费、人身危害、环境污染和经济损失等问题。目前,单一镀层难以在高温、高压和高磨损等恶劣工况条件下长期稳定工作,研究和开发高性能复合镀层引起了广泛的关注。镍磷合金基复合镀层的研究较多,特别是制备多功能镍磷合金基复合镀层已成为研究重点。本研究集中于Ni-P电沉积工艺的调控以及电镀液的改进,利用第三相微粒的掺杂制备优异的多功能镍磷合金镀层,在苛刻工况下,发挥其优越性。主要研究结果如下:(1)采用电沉积技术制备了Ni-P镀层,系统研究了Ni-P镀层的性能与电沉积工艺参数之间的关系。结果表明,电沉积工艺参数的改变影响了Ni-P镀层中Ni3P和Ni相的含量以及表面微观形貌。为了获得最优的耐盐雾腐蚀性能和最高的显微硬度(约为660 kg mm-2),Ni-P镀层的电沉积工艺参数应控制在工作温度为50°C,电流密度为2.0 A·dm-2和电镀液pH值为3 ~ 4。该研究为后续Ni-P镀层的优化奠定基础。(2)利用复合电沉积技术将Ti3C2Tx颗粒掺杂到Ni-P镀层中,制备了Ni-P-Ti3C2Tx复合镀层。该复合镀层的表面出现了树枝状结构,且表面由亲水性转变为疏水性。在3.5 wt% NaCl溶液的腐蚀介质中,当Ti3C2Tx颗粒在镀液中的浓度为6 g·L-1时,Ni-P-Ti3C2Tx复合镀层的耐电化学腐蚀性能最优,Rct(电荷转移电阻)由96.8 W·cm2(Ni-P镀层)增加至217.7 W·cm2,说明腐蚀速率降低。当Ti3C2Tx颗粒在镀液中的浓度为4 g·L-1时,Ni-P-Ti3C2Tx复合镀层的显微硬度最大,约为900 kg·mm-2,且在荷载为5 N和转速为0.62 m·s-1的条件下,该复合镀层的耐摩擦性能最优,最小磨损量相比于Ni-P镀层降低了约90%,但平均摩擦系数较Ni-P镀层有所增加。(3)为了进一步提高Ni-P-Ti3C2Tx复合镀层的耐摩擦性能,利用MoS2对Ti3C2Tx进行改性,得到了Ti3C2Tx/MoS2复合颗粒,并将该颗粒掺杂到Ni-P镀层中,制备了Ni-P-Ti3C2Tx/MoS2复合镀层。Ti3C2Tx/MoS2颗粒的掺杂使该复合镀层的表面微观形貌发生了改变,表面出现了花椰菜状结构,表面粗糙度不断增加。当Ti3C2Tx/MoS2颗粒在镀液中的浓度为6 g·L-1时,Ni-P-Ti3C2Tx/MoS2复合镀层的表面疏水性进一步增加,表面接触角最大约为138.64°,且耐电化学腐蚀性能最优,Rct由96.8 W·cm2(Ni-P镀层)增加至312.4 W·cm2,说明腐蚀速率降低。此外,该复合镀层的显微硬度最大,约为1200 kg·mm-2,在荷载为5 N和转速为0.62 m·s-1的条件下,该复合镀层的最小磨损量和平均摩擦系数相比于Ni-P-Ti3C2Tx复合镀层分别降低了约79%和59%。(4)对Ni-P-Ti3C2Tx/MoS2复合镀层电化学腐蚀以及摩擦磨损的机理进行了分析。通过研究Ni-P-Ti3C2Tx/MoS2复合镀层表面的亲疏水性,发现其表面存在疏水性颗粒的富集,并维持了疏水的Cassie-Baxter状态。通过观察Ni-P-Ti3C2Tx/MoS2复合镀层在3.5 wt% NaCl溶液的电化学腐蚀行为,发现镀层中的Ti3C2Tx/MoS2促进了表面钝化,限制了腐蚀介质的扩散,加速了阳极极化作用。通过分析Ni-P-Ti3C2Tx/MoS2复合镀层磨损率和磨损机制变化的原因,发现Ti3C2Tx/MoS2颗粒不仅可以形成吸附膜起到润滑的作用,而且可以形成摩擦保护膜起到自我修复的作用。

语种中文
源URL[http://ir.ipe.ac.cn/handle/122111/60766]  
推荐引用方式
GB/T 7714
杜英超. 微纳米颗粒掺杂改性Ni-P复合镀层的制备及性能研究[D]. 中国科学院过程工程研究所. 2021.

入库方式: OAI收割

来源:过程工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。