中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
有机前驱体法BN-Si3N4复相陶瓷纤维的制备与性能研究

文献类型:学位论文

作者谭竞
答辩日期2021-06-01
文献子类博士
授予单位中国科学院过程工程研究所
导师张伟刚
关键词有机前驱体,氮化硼,氮化硅,复相陶瓷纤维
英文摘要

随着航空航天工业的发展,高马赫数飞行器对于高温透波材料,特别是高性能透波陶瓷纤维的需求日益剧烈。BN-Si3N4复相陶瓷纤维结合了BN纤维优异的热稳定性、介电性能和Si3N4纤维出色的力学性能的优点,是一种极具发展潜力的高温透波陶瓷纤维材料。本论文以聚环硼氮烷(PBN)和聚硅氮烷(PSZ)为前驱体,通过前驱体的复合、熔融纺丝、电子束交联和高温热解制备了具有优良力学、介电、抗氧化等综合性能的BN-Si3N4复相陶瓷纤维。论文首先考察了PBN与PSZ前驱体的基本性质与热解过程,并研究了复合前驱体的复合效应与热解机理;研究了复合前驱体的流变性和熔融纺丝工艺,制备了优质的纤维原丝;考察了不同交联工艺对纤维不熔化处理的影响;最后经过高温烧成制备了复相陶瓷纤维,并探讨了纤维的形貌与结构对纤维性能的影响。本论文的主要研究结论如下:1、聚环硼氮烷(PBN)前驱体的热解产物为乱层t-BN,而聚硅氮烷(PSZ)前驱体的热解产物为混合的α-Si3N4与β-Si3N4。二者的热解产物中碳含量均在0.5wt%以下,说明PBN与PSZ适合作为透波陶瓷纤维的前驱体使用。2、PBN/PSZ复合前驱体的热解过程存在复合效应,复合前驱体中PSZ含量的增加能够提高热解产物中BN相的结晶度。当热解产物中Si3N4含量为25wt%时,BN晶体的结晶度达到最大值。复合前驱体热解产物中Si3N4均为无定形态。3、PBN/PSZ复合前驱体的热解过程分为无机化过程和晶体化过程。无机化过程主要通过N-H、-NHCH3、-CH3以及Si-H等基团之间的反应放出CH4、CH3NH2等小分子来完成。复合前驱体的无机化过程在1000℃完成,其热解产物中的BN相从1400℃开始出现结晶行为,在1600℃保温120 min可以确保h-BN结晶过程的完成。4、PBN/PSZ复合前驱体具有优异的纺丝性能,其粘流活化能为14.20 kJ/mol。其熔体为假塑性流体,呈现剪切变稀特性,在120-150℃温度段流动指数为0.812-0.982。5、PBN/PSZ复合前驱体熔融纺丝工艺由纺丝温度、纺丝压力和收丝速度控制,三个工艺参数需要相互协调匹配,才能制备出均匀致密,直径合适的纤维原丝。本实验中合适的纺丝条件为纺丝温度110-135℃,纺丝压力0.3-0.7 MPa,收丝速度>8 m/s。6、采用NH3交联与电子束交联两种方式对纤维原丝进行了不熔化处理。研究结果表明,电子束交联是更合适的不熔化处理工艺。不熔化纤维的凝胶含量为81.8wt%,热解至1000℃后,所得的陶瓷纤维均匀致密,没有缺陷。7、不熔化纤维经过1000℃、NH3处理和1600℃、N2高温热解后,陶瓷收率为40wt%,残余的碳含量约为0.2wt%,所得陶瓷纤维的组成接近化学计量比,为BN(Si3N4)0.05。8、1600℃高温烧成的复相陶瓷纤维呈“壳芯结构”。纤维的边缘由一层结晶度较低的BN构成,而纤维的中心区域,BN晶粒发育十分完善,(002)晶面间距为0.333 nm,符合h-BN晶体的理论值,晶粒尺寸超过15 nm。9、复相陶瓷纤维具有优秀的力学、介电和抗氧化性能。得到的纤维的拉伸强度和杨氏模量分别为1040 MPa和90 GPa,其介电常数和介电损耗分别为3.21和3.11×10-3。在空气中900℃和1000℃下中氧化4 h其增重率分别为2wt%和7wt%。

语种中文
源URL[http://ir.ipe.ac.cn/handle/122111/60809]  
推荐引用方式
GB/T 7714
谭竞. 有机前驱体法BN-Si3N4复相陶瓷纤维的制备与性能研究[D]. 中国科学院过程工程研究所. 2021.

入库方式: OAI收割

来源:过程工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。