中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Predicting the 25th and 26th solar cycles using the long short-term memory method

文献类型:期刊论文

作者Liu, Xiaohuan1,2; Zeng, Shuguang1,2; Deng LH(邓林华)3; Zeng, Xiangyun1,2; Zheng, Sheng1,2
刊名PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN
出版日期2023-05
关键词Method: LSTM Sun: activity Sun: solar cycle predict Sun: sunspots
ISSN号0004-6264
DOI10.1093/pasj/psad029
产权排序第3完成单位
文献子类Article; Early Access
英文摘要

Solar activities directly or indirectly affect space missions, geophysical environment, space climate, and human activities. We used the long short-term memory (LSTM) deep learning method to predict the amplitude and peak time of solar cycles (SCs) 25 and 26 by using the monthly relative sunspot number data taken from the National Astronomical Observatory of Japan (NAOJ). The dataset is divided into eight schemes of two to nine slices for training, showing that the five-slice LSTM model with root mean square error of 11.38 is the optimal model. According to the prediction, SC 25 will be about 21% stronger than SC 24, with a peak of 135.2 occurring in 2024 April. SC 26 will be similar to SC 25 and reach its peak of 135.0 in 2035 January. Our analysis results indicate that the sunspot data from NAOJ is highly credible and comparable.

学科主题天文学 ; 太阳与太阳系 ; 太阳物理学
URL标识查看原文
出版地GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
WOS关键词NEURAL-NETWORK ; AMPLITUDE ; LSTM
WOS研究方向Astronomy & Astrophysics
语种英语
WOS记录号WOS:000981345800001
出版者OXFORD UNIV PRESS
资助机构Yunnan Key Laboratory of Solar Physics and Space Science[YNSPCC202208] ; National Natural Science Foundation of China[U2031202, 12203029, 11873089] ; CAS Light in Western China Program, Yunnan Fundamental Research Projects[202301AV070007] ; Yunnan Province XingDian Talent Support Program
版本出版稿
源URL[http://ir.ynao.ac.cn/handle/114a53/25918]  
专题云南天文台_抚仙湖太阳观测站
通讯作者Deng LH(邓林华); Zeng, Xiangyun; Zheng, Sheng
作者单位1.Center for Astronomy and Space Sciences, China Three Gorges University, Yichang 443000, People’s Republic of China;
2.College of Science, China Three Gorges University, Yichang 443000, People’s Republic of China;
3.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, People’s Republic of China
推荐引用方式
GB/T 7714
Liu, Xiaohuan,Zeng, Shuguang,Deng LH,et al. Predicting the 25th and 26th solar cycles using the long short-term memory method[J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN,2023.
APA Liu, Xiaohuan,Zeng, Shuguang,Deng LH,Zeng, Xiangyun,&Zheng, Sheng.(2023).Predicting the 25th and 26th solar cycles using the long short-term memory method.PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN.
MLA Liu, Xiaohuan,et al."Predicting the 25th and 26th solar cycles using the long short-term memory method".PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN (2023).

入库方式: OAI收割

来源:云南天文台

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。