Learning dynamics of kernel-based deep neural networks in manifolds
文献类型:期刊论文
作者 | Wu, Wei2,4![]() |
刊名 | SCIENCE CHINA-INFORMATION SCIENCES
![]() |
出版日期 | 2021-11-01 |
卷号 | 64期号:11页码:15 |
关键词 | learning dynamics kernel-based convolution manifolds control model network stability |
ISSN号 | 1674-733X |
DOI | 10.1007/s11432-020-3022-3 |
通讯作者 | Jing, Xiaoyuan |
英文摘要 | Convolutional neural networks (CNNs) obtain promising results via layered kernel convolution and pooling operations, yet the learning dynamics of the kernel remain obscure. We propose a continuous form to describe kernel-based convolutions through integration in neural manifolds. The status of spatial expression is proposed to analyze the stability of kernel-based CNNs. We divide CNN dynamics into the three stages of unstable vibration, collaborative adjusting, and stabilized fluctuation. According to the system control matrix of the kernel, the kernel-based CNN training proceeds via the unstable and stable status and is verified by numerical experiments. |
WOS关键词 | SINGULARITIES ; WORKS |
资助项目 | Key Project of National Natural Science Foundation of China[61933013] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA22030301] ; NSFC-Key Project of General Technology Fundamental Research United Fund[U1736211] ; Natural Science Foundation of Guangdong Province[2019A1515011076] ; Key Project of Natural Science Foundation of Hubei Province[2018CFA024] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000709794800002 |
出版者 | SCIENCE PRESS |
资助机构 | Key Project of National Natural Science Foundation of China ; Strategic Priority Research Program of the Chinese Academy of Sciences ; NSFC-Key Project of General Technology Fundamental Research United Fund ; Natural Science Foundation of Guangdong Province ; Key Project of Natural Science Foundation of Hubei Province |
源URL | [http://ir.idsse.ac.cn/handle/183446/9420] ![]() |
专题 | 深海工程技术部_深海信息技术研究室 |
通讯作者 | Jing, Xiaoyuan |
作者单位 | 1.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China 2.Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China 3.Guangdong Univ Petrochem Technol, Sch Comp, Maoming 525000, Peoples R China 4.Chinese Acad Sci, Inst Deep Sea Sci & Engn, Sanya 572000, Peoples R China 5.City Univ Macau, Inst Data Sci, Macau 999078, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Wei,Jing, Xiaoyuan,Du, Wencai,et al. Learning dynamics of kernel-based deep neural networks in manifolds[J]. SCIENCE CHINA-INFORMATION SCIENCES,2021,64(11):15. |
APA | Wu, Wei,Jing, Xiaoyuan,Du, Wencai,&Chen, Guoliang.(2021).Learning dynamics of kernel-based deep neural networks in manifolds.SCIENCE CHINA-INFORMATION SCIENCES,64(11),15. |
MLA | Wu, Wei,et al."Learning dynamics of kernel-based deep neural networks in manifolds".SCIENCE CHINA-INFORMATION SCIENCES 64.11(2021):15. |
入库方式: OAI收割
来源:深海科学与工程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。