Deep-Sea: A Reconfigurable Accelerator for Classic CNN
文献类型:期刊论文
作者 | Xiong, Hao1,2; Sun, Kelin2![]() ![]() ![]() ![]() |
刊名 | WIRELESS COMMUNICATIONS & MOBILE COMPUTING
![]() |
出版日期 | 2022-02-02 |
卷号 | 2022页码:23 |
ISSN号 | 1530-8669 |
DOI | 10.1155/2022/4726652 |
通讯作者 | Sun, Kelin |
目次 | 否 |
英文摘要 | To meet the changing real-time edge engineering application requirements of CNN, aiming at the lack of universality and flexibility of CNN hardware acceleration architecture based on ARM+FPGA, a general low-power all pipelined CNN hardware acceleration architecture is proposed to cope with the continuously updated CNN algorithm and accelerate in hardware platforms with different resource constraints. In the framework of the general hardware architecture, a basic instruction set belonging to the architecture is proposed, which can be used to calculate and configure different versions of CNN algorithms. Based on the instruction set, the configurable computing subsystem, memory management subsystem, on-chip cache subsystem, and instruction execution subsystem are designed and implemented. In addition, in the processing of convolution results, the on-chip storage unit is used to preprocess the convolution results, to speed up the activation and pooling calculation process in parallel. Finally, the accelerator is modeled at the RTL level and deployed on the XC7Z100 heterogeneous device. The lightweight networks YOLOv2-tiny and YOLOv3-tiny commonly used in engineering applications are verified on the accelerator. The results show that the peak performance of the accelerator reaches 198.37 GOP/s, the clock frequency reaches 210 MHz, and the power consumption is 4.52 w under 16-bit width. |
资助项目 | National Key Research and Development Plan of China[Y820043001] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000766942600002 |
出版者 | WILEY-HINDAWI |
资助机构 | National Key Research and Development Plan of China |
版本 | 出版稿 |
源URL | [http://ir.idsse.ac.cn/handle/183446/9300] ![]() |
专题 | 深海工程技术部_深海视频技术研究室 研究生部 |
通讯作者 | Sun, Kelin |
作者单位 | 1.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Deep Sea Sci & Engn, Sanya 572000, Hainan, Peoples R China |
推荐引用方式 GB/T 7714 | Xiong, Hao,Sun, Kelin,Zhang, Bing,et al. Deep-Sea: A Reconfigurable Accelerator for Classic CNN[J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING,2022,2022:23. |
APA | Xiong, Hao,Sun, Kelin,Zhang, Bing,Yang, Jingchuan,&Xu, Huiping.(2022).Deep-Sea: A Reconfigurable Accelerator for Classic CNN.WIRELESS COMMUNICATIONS & MOBILE COMPUTING,2022,23. |
MLA | Xiong, Hao,et al."Deep-Sea: A Reconfigurable Accelerator for Classic CNN".WIRELESS COMMUNICATIONS & MOBILE COMPUTING 2022(2022):23. |
入库方式: OAI收割
来源:深海科学与工程研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。