中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Spatiotemporal analysis of global atmospheric XCO2 concentrations before and after COVID-19 using HASM data fusion method

文献类型:期刊论文

作者Liu, Yu4; Wu, Binwei1,2; Yue, Tianxiang4
刊名FRONTIERS IN ENVIRONMENTAL SCIENCE
出版日期2023-01-04
卷号10页码:1079480
关键词XCO2 COVID-19 HASM GEOS-chem GOSAT
ISSN号2296-665X
DOI10.3389/fenvs.2022.1079480
产权排序2
文献子类Article
英文摘要The COVID-19 outbreak that began in 2020 has changed human activities and thus reduced anthropogenic carbon emissions in most parts of the world. To accurately study the impact of the COVID-19 pandemic on changes in atmospheric XCO2 concentrations, a data fusion method called High Accuracy Surface Modeling (HASM) is applied using the CO2 simulation from GEOS-Chem as the driving field and GOSAT XCO2 observations as the accuracy control conditions to obtain continuous spatiotemporal global XCO2 concentrations. Cross-validation shows that using High Accuracy Surface Modeling greatly improves the mean absolute error and root mean square error of the XCO2 data compared with those for GEOS-Chem simulation data before fusion, and the R (2) is also increased from 0.54 to 0.79 after fusion. Moreover, OCO-2/OCO-3 XCO2 observational data verify that the fused XCO2 data achieve a lower MAE and RMSE. Spatiotemporal analysis shows that the global XCO2 concentration exhibited no obvious trend before or after the COVID-19 outbreak, but the growth of global and terrestrial atmospheric XCO2 in 2020 can reflect the impact of the COVID-19 pandemic; that is, the rapid growth in terrestrial atmospheric XCO2 observed before 2019 slowed, and high-speed growth resumed in 2021. Finally, obvious differences in the pattern of XCO2 growth are found on different continents.
学科主题Environmental Sciences & Ecology
WOS关键词CHEMICAL-TRANSPORT MODEL ; CO2 ; SATELLITE ; REGION ; EAST ; PATTERNS ; SCALE ; SPACE ; GOSAT
WOS研究方向Environmental Sciences & Ecology
WOS记录号WOS:000917161400001
出版者FRONTIERS MEDIA SA
源URL[http://ir.igsnrr.ac.cn/handle/311030/197891]  
专题资源与环境信息系统国家重点实验室_外文论文
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China
2.Qingdao Univ, Qingdao, Peoples R China
3.Qingdao Municipal Hosp, Qingdao, Peoples R China
4.Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yu,Wu, Binwei,Yue, Tianxiang. Spatiotemporal analysis of global atmospheric XCO2 concentrations before and after COVID-19 using HASM data fusion method[J]. FRONTIERS IN ENVIRONMENTAL SCIENCE,2023,10:1079480.
APA Liu, Yu,Wu, Binwei,&Yue, Tianxiang.(2023).Spatiotemporal analysis of global atmospheric XCO2 concentrations before and after COVID-19 using HASM data fusion method.FRONTIERS IN ENVIRONMENTAL SCIENCE,10,1079480.
MLA Liu, Yu,et al."Spatiotemporal analysis of global atmospheric XCO2 concentrations before and after COVID-19 using HASM data fusion method".FRONTIERS IN ENVIRONMENTAL SCIENCE 10(2023):1079480.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。