Spatiotemporal analysis of global atmospheric XCO2 concentrations before and after COVID-19 using HASM data fusion method
文献类型:期刊论文
作者 | Liu, Yu4; Wu, Binwei1,2; Yue, Tianxiang4 |
刊名 | FRONTIERS IN ENVIRONMENTAL SCIENCE
![]() |
出版日期 | 2023-01-04 |
卷号 | 10页码:1079480 |
关键词 | XCO2 COVID-19 HASM GEOS-chem GOSAT |
ISSN号 | 2296-665X |
DOI | 10.3389/fenvs.2022.1079480 |
产权排序 | 2 |
文献子类 | Article |
英文摘要 | The COVID-19 outbreak that began in 2020 has changed human activities and thus reduced anthropogenic carbon emissions in most parts of the world. To accurately study the impact of the COVID-19 pandemic on changes in atmospheric XCO2 concentrations, a data fusion method called High Accuracy Surface Modeling (HASM) is applied using the CO2 simulation from GEOS-Chem as the driving field and GOSAT XCO2 observations as the accuracy control conditions to obtain continuous spatiotemporal global XCO2 concentrations. Cross-validation shows that using High Accuracy Surface Modeling greatly improves the mean absolute error and root mean square error of the XCO2 data compared with those for GEOS-Chem simulation data before fusion, and the R (2) is also increased from 0.54 to 0.79 after fusion. Moreover, OCO-2/OCO-3 XCO2 observational data verify that the fused XCO2 data achieve a lower MAE and RMSE. Spatiotemporal analysis shows that the global XCO2 concentration exhibited no obvious trend before or after the COVID-19 outbreak, but the growth of global and terrestrial atmospheric XCO2 in 2020 can reflect the impact of the COVID-19 pandemic; that is, the rapid growth in terrestrial atmospheric XCO2 observed before 2019 slowed, and high-speed growth resumed in 2021. Finally, obvious differences in the pattern of XCO2 growth are found on different continents. |
学科主题 | Environmental Sciences & Ecology |
WOS关键词 | CHEMICAL-TRANSPORT MODEL ; CO2 ; SATELLITE ; REGION ; EAST ; PATTERNS ; SCALE ; SPACE ; GOSAT |
WOS研究方向 | Environmental Sciences & Ecology |
WOS记录号 | WOS:000917161400001 |
出版者 | FRONTIERS MEDIA SA |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/197891] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China 2.Qingdao Univ, Qingdao, Peoples R China 3.Qingdao Municipal Hosp, Qingdao, Peoples R China 4.Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Yu,Wu, Binwei,Yue, Tianxiang. Spatiotemporal analysis of global atmospheric XCO2 concentrations before and after COVID-19 using HASM data fusion method[J]. FRONTIERS IN ENVIRONMENTAL SCIENCE,2023,10:1079480. |
APA | Liu, Yu,Wu, Binwei,&Yue, Tianxiang.(2023).Spatiotemporal analysis of global atmospheric XCO2 concentrations before and after COVID-19 using HASM data fusion method.FRONTIERS IN ENVIRONMENTAL SCIENCE,10,1079480. |
MLA | Liu, Yu,et al."Spatiotemporal analysis of global atmospheric XCO2 concentrations before and after COVID-19 using HASM data fusion method".FRONTIERS IN ENVIRONMENTAL SCIENCE 10(2023):1079480. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。