中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Large spin Hall conductivity and excellent hydrogen evolution reaction activity in unconventional PtTe1.75 monolayer

文献类型:期刊论文

作者Shao, Dexi2,3,4; Deng, Junze2,3,5; Sheng, Haohao2,3,5; Zhang, Ruihan2,3,5; Weng, Hongming2,3,5; Fang, Zhong2,3,5; Chen, Xing-Qiu1,6; Sun, Yan1,6; Wang, Zhijun2,3,5
刊名RESEARCH
出版日期2023-01-10
卷号2022页码:1-11
ISSN号2096-5168
通讯作者Sun, Yan(sunyan@imr.ac.cn)
英文摘要Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2x2) patterned PtTe2 monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe1.75) hosts large and tunable spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventional nature relies on the A1@1b band representation (BR) of the highest valence band without SOC. The large SHC comes from the Rashba spin-orbit coupling (SOC) in the noncentrosymmetric structure induced by the Te vacancy. Even though it has a metallic SOC band structure, the Z(2) invariant is well defined due to the existence of the direct band gap and is computed to be nontrivial. The calculated SHC is as large as 1.25x10(3h/e )(omega)(-1 )at the Fermi level (E-F). By tuning the chemical potential from E-F - 0.3 to E-F + 0.3 eV, it varies rapidly and monotonically from -1.2 x 10(3) to 3.1x10(3h/e )(omega)(-1). In addition, we also find the Te vacancy in the patterned monolayer can induce excellent HER activity. Our results not only offer a new idea to search 2D materials with large SHC, i.e., by introducing inversion-symmetry breaking vacancies in large SOC systems, but also provide a feasible system with tunable SHC (by applying gate voltage) and excellent HER activity.
资助项目National Natural Sci- ence Foundation of China[11974395] ; National Natural Sci- ence Foundation of China[12188101] ; National Natural Sci- ence Foundation of China[52188101] ; National Natural Sci- ence Foundation of China[51725103] ; Strate- gic Priority Research Program of Chinese Academy of Sciences[XDB33000000] ; Center for Materials Genome
WOS研究方向Science & Technology - Other Topics
语种英语
出版者AMER ASSOC ADVANCEMENT SCIENCE
WOS记录号WOS:000920179100001
资助机构National Natural Sci- ence Foundation of China ; Strate- gic Priority Research Program of Chinese Academy of Sciences ; Center for Materials Genome
源URL[http://ir.imr.ac.cn/handle/321006/175287]  
专题金属研究所_中国科学院金属研究所
通讯作者Sun, Yan
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
2.Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
4.Hangzhou Normal Univ, Dept Phys, Hangzhou 311121, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei, Peoples R China
推荐引用方式
GB/T 7714
Shao, Dexi,Deng, Junze,Sheng, Haohao,et al. Large spin Hall conductivity and excellent hydrogen evolution reaction activity in unconventional PtTe1.75 monolayer[J]. RESEARCH,2023,2022:1-11.
APA Shao, Dexi.,Deng, Junze.,Sheng, Haohao.,Zhang, Ruihan.,Weng, Hongming.,...&Wang, Zhijun.(2023).Large spin Hall conductivity and excellent hydrogen evolution reaction activity in unconventional PtTe1.75 monolayer.RESEARCH,2022,1-11.
MLA Shao, Dexi,et al."Large spin Hall conductivity and excellent hydrogen evolution reaction activity in unconventional PtTe1.75 monolayer".RESEARCH 2022(2023):1-11.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。