中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys

文献类型:期刊论文

作者Yan, J. X.1,3,4; Zhang, Z. J.3; Zhang, P.3; Liu, J. H.1,3; Yu, H.2,3,5; Hu, Q. M.1,3; Yang, J. B.1,3; Zhang, Z. F.1,3
刊名JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
出版日期2023-03-10
卷号139页码:232-244
关键词Medium-entropy alloys First-principles calculations Phase stability Stacking-fault energy Strength Ductility
ISSN号1005-0302
DOI10.1016/j.jmst.2022.07.031
通讯作者Hu, Q. M.(qmhu@imr.ac.cn) ; Yang, J. B.(jbyang@imr.ac.cn) ; Zhang, Z. F.(zhfzhang@imr.ac.cn)
英文摘要The development of multi-principal element alloys (MPEAs, also called as high-or medium-entropy al-loys, HEAs/MEAs) provides tremendous possibilities for materials innovation. However, designing MPEAs with desirable mechanical properties confronts great challenges due to their vast composition space. In this work, we provide an essential criterion to efficiently screen the CoCrNi MEAs with outstanding strength-ductility combinations. The negative Gibbs free energy difference Delta EFCC-BCC between the face-centered cubic (FCC) and body-centered cubic (BCC) phases, the enhancement of shear modulus G and the decline of stacking fault energy (SFE) gamma isf are combined as three requisites to improve the FCC phase stability, yield strength, deformation mechanisms, work-hardening ability and ductility in the criterion. The effects of chemical composition on AEFCC-BCC, G and gamma isf were investigated with the first principles calculations for CoxCr33Ni67-x, Co33CryNi67-y and CozCr66-zNi34 (0 < x, y < 67 and 0 < z < 66) alloys. Based on the essential criterion and the calculation results, the composition space that displays the neg-ative Gibbs free energy difference AEFCC-BCC, highest shear modulus G and lowest SFE gamma isf was screened with the target on the combination of high strength and excellent ductility. In this context, the optimal composition space of Co-Cr-Ni alloys was predicted as 60 at.%-67 at.% Co, 30 at.%-35 at.% Cr and 0 at.%-6 at.% Ni, which coincides well with the previous experimental evidence for Co55Cr40Ni5 alloys. The valid-ity of essential criterion is further proved after systematic comparison with numerous experimental data, which demonstrates that the essential criterion can provide significant guidance for the quick exploitation of strong and ductile MEAs and promote the development and application of MPEAs.(c) 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
资助项目Na- tional Natural Science Foundation of China (NSFC) ; Youth Innova- tion Promotion Association CAS ; KC Wong Education Foundation ; [52130 0 02] ; [52071316] ; [51871223] ; [51771206] ; [51571198] ; [2021192] ; [GJTD-2020-09]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:000911058800001
出版者JOURNAL MATER SCI TECHNOL
资助机构Na- tional Natural Science Foundation of China (NSFC) ; Youth Innova- tion Promotion Association CAS ; KC Wong Education Foundation
源URL[http://ir.imr.ac.cn/handle/321006/175404]  
专题金属研究所_中国科学院金属研究所
通讯作者Hu, Q. M.; Yang, J. B.; Zhang, Z. F.
作者单位1.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
2.Shenyang Univ Technol, Sch Informat Sci & Engn, Shenyang 111003, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Shi changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China
4.Chongqing Jiaotong Univ, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
5.Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
推荐引用方式
GB/T 7714
Yan, J. X.,Zhang, Z. J.,Zhang, P.,et al. Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2023,139:232-244.
APA Yan, J. X..,Zhang, Z. J..,Zhang, P..,Liu, J. H..,Yu, H..,...&Zhang, Z. F..(2023).Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,139,232-244.
MLA Yan, J. X.,et al."Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 139(2023):232-244.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。