中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The effect of deformation temperature on recrystallization in a Ni-based single crystal superalloys

文献类型:期刊论文

作者Xiong, Wei1,2; Huang, Zaiwang1; Xie, Guang2; Ge, Zhicheng2,3; Wang, Xin1; Lu, Yuzhang2; Zheng, Wei2; Lou, Langhong2; Zhang, Jian2
刊名MATERIALS & DESIGN
出版日期2022-10-01
卷号222页码:18
关键词Single crystal superalloys Recrystallization Directional solidification Deformation temperature Compression
ISSN号0264-1275
DOI10.1016/j.matdes.2022.111042
通讯作者Xie, Guang(gxie@imr.ac.cn) ; Zhang, Jian(jianzhang@imr.ac.cn)
英文摘要A series of experiments have been carried out to investigate the effect of deformation temperature on the recrystallization of nickel-based single crystal superalloys using isothermal (compression) and non -isothermal (directional solidification) deformation. The recrystallization features induced by accumu-lated plastic strain in two temperature ranges (1300 & ndash;1150 degrees C and 600 & ndash;400 degrees C) are distinctly different from that induced by deformation in one temperature range (1300 & ndash;1150 degrees C). The different recrystallized features (area and number of grains) induced by isothermal deformation at temperatures ranging from room temperature to solidus can be attributed to different dislocation features, such as slip band, KW -lock, y/y & rsquo; interfacial dislocations and Low Angle Boundary. Microscopic observations disclose that inter-actions of multiple slip systems have higher tendency of recrystallization. A close view between deformed and recrystallized samples of different deformation temperatures reveals that the critical ker-nel average misorientation (KAM) to induce recrystallization is about 0.4 degrees. Furthermore, the number of recrystallized grains is proportional with the average KAM value based on the experimental measure-ments in a wide temperature range. Isolated recrystallized grains are observed at the stress concentration locations in the low plastic strain zone due to local high misorientation. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/). Superscript/Subscript Available
WOS研究方向Materials Science
语种英语
WOS记录号WOS:000859855100001
出版者ELSEVIER SCI LTD
源URL[http://ir.imr.ac.cn/handle/321006/175742]  
专题金属研究所_中国科学院金属研究所
通讯作者Xie, Guang; Zhang, Jian
作者单位1.Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Superalloys Div, Shenyang 110016, Peoples R China
3.Inst Corros Sci & Technol, Guangzhou 510530, Peoples R China
推荐引用方式
GB/T 7714
Xiong, Wei,Huang, Zaiwang,Xie, Guang,et al. The effect of deformation temperature on recrystallization in a Ni-based single crystal superalloys[J]. MATERIALS & DESIGN,2022,222:18.
APA Xiong, Wei.,Huang, Zaiwang.,Xie, Guang.,Ge, Zhicheng.,Wang, Xin.,...&Zhang, Jian.(2022).The effect of deformation temperature on recrystallization in a Ni-based single crystal superalloys.MATERIALS & DESIGN,222,18.
MLA Xiong, Wei,et al."The effect of deformation temperature on recrystallization in a Ni-based single crystal superalloys".MATERIALS & DESIGN 222(2022):18.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。