中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Effect of Silicon on Precipitates of High-Silicon Austenitic Stainless Steel

文献类型:期刊论文

作者Li Xiaohuan1; Cui Guowei1; Chen Sihan2; Liang Tian2,3,4; Xing Weiwei2; Ma Yingche2; Wang Ping1; Wu Jinming3; Li Guobin4
刊名RARE METAL MATERIALS AND ENGINEERING
出版日期2022-08-01
卷号51期号:8页码:2769-2776
ISSN号1002-185X
关键词high-silicon austenitic stainless steel silicon content sigma-phase micro-hardness tester Cr3Ni5Si2 phase
通讯作者Liang Tian(tliang@imr.ac.cn)
英文摘要The effect of silicon contents (4wt%similar to 8wt%) on microstructure of high-silicon austenitic stainless steel ZeCor was investigated by XRD, TEM and indentation deformation. Results show that increasing Si content leads to the phase constitute change of ZeCor alloy: the microstructure is single-phase austenite (gamma phase) in ZeCor-4wt%Si alloy, gamma phase with a small quantity of sigma-phase in ZeCor-6wt%Si alloy, and as for the ZeCor-8wt%Si alloy, the main precipitations are Cr3Ni5Si2 phase and a bit sigma-phases. In addition, the Cr3Ni5Si2 phase has a higher silicon and nickel content than the sigma-phase. The Cr3Ni5Si2 phase with a micro-hardness HV as high as 7840 MPa is a typical hard and brittle phase, and the precipitation of such phase can greatly increase the micro-hardness of the. matrix in the ZeCor-8wt% Si alloy. The strengthening mechanism of. matrix in ZeCor alloy is as follows: the solid solution strengthening is the main strengthening mechanism in ZeCor-6wt% Si alloy, while the solid solution strengthening of Si and the precipitation strengthening of Cr3Ni5Si2 greatly increase the micro-hardness of the. matrix in ZeCor-8wt%Si alloy, and the Cr3Ni5Si2 phases have a great effect.
资助项目Postdoctoral Research Funding Project of Zhejiang Province[ZJ2020017]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
出版者NORTHWEST INST NONFERROUS METAL RESEARCH
WOS记录号WOS:000864195300008
资助机构Postdoctoral Research Funding Project of Zhejiang Province
源URL[http://ir.imr.ac.cn/handle/321006/176158]  
专题金属研究所_中国科学院金属研究所
通讯作者Liang Tian
作者单位1.Northeastern Univ, Key Lab Electromagnet Proc Mat, Minist Educ, Shenyang 110819, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China
3.Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
4.Zhejiang Xindeda Special Pipe Ind Co Ltd, Wenzhou 325024, Peoples R China
推荐引用方式
GB/T 7714
Li Xiaohuan,Cui Guowei,Chen Sihan,et al. Effect of Silicon on Precipitates of High-Silicon Austenitic Stainless Steel[J]. RARE METAL MATERIALS AND ENGINEERING,2022,51(8):2769-2776.
APA Li Xiaohuan.,Cui Guowei.,Chen Sihan.,Liang Tian.,Xing Weiwei.,...&Li Guobin.(2022).Effect of Silicon on Precipitates of High-Silicon Austenitic Stainless Steel.RARE METAL MATERIALS AND ENGINEERING,51(8),2769-2776.
MLA Li Xiaohuan,et al."Effect of Silicon on Precipitates of High-Silicon Austenitic Stainless Steel".RARE METAL MATERIALS AND ENGINEERING 51.8(2022):2769-2776.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。