Interpreting electrochemical noise signal arising from stress corrosion cracking of 304 stainless steel in simulated PWR primary water environment by coupling acoustic emission
文献类型:期刊论文
作者 | Zhang, Zhen1,2; Wu, Xinqiang1 |
刊名 | JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
![]() |
出版日期 | 2022-09-01 |
卷号 | 20页码:3807-3817 |
关键词 | Stress corrosion cracking Electrochemical noise Acoustic emission High-temperature water Stainless steel |
ISSN号 | 2238-7854 |
DOI | 10.1016/j.jmrt.2022.08.129 |
通讯作者 | Zhang, Zhen(zzhang14s@alum.imr.ac.cn) ; Wu, Xinqiang(xqwu@imr.ac.cn) |
英文摘要 | Electrochemical noise (EN) signals arising from stress corrosion cracking (SCC) of 304 stainless steel (SS) in borated and lithiated high-temperature water were monitored. Acoustic emission (AE) signals were simultaneously measured to relate the EN signals with the SCC process. Through Weibull analysis of the EN signals, it was demonstrated that the EN technique can in-situ capture the SCC events in high-temperature water. With evolu-tion of the SCC process, Hilbert time-frequency spectrum of the EN signals gradually migrated from high frequency to low frequency. The capacity of EN and AE techniques to monitor the SCC process in high-temperature water is compared.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
资助项目 | National Natural Science Foundation of China ; Fundamental Research Program of Shanxi Province ; Shanxi Provincial Key Laboratory of Metal Solidification Con-trol and Precision Manufacturing Open Fund ; [51371174] ; [52105409] ; [20210302124042] ; [MSPM202006] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
语种 | 英语 |
WOS记录号 | WOS:000863482800007 |
出版者 | ELSEVIER |
资助机构 | National Natural Science Foundation of China ; Fundamental Research Program of Shanxi Province ; Shanxi Provincial Key Laboratory of Metal Solidification Con-trol and Precision Manufacturing Open Fund |
源URL | [http://ir.imr.ac.cn/handle/321006/176202] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Zhang, Zhen; Wu, Xinqiang |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, CAS Key Lab Nucl Mat & Safety Assessment, Liaoning Key Lab Safety & Assessment Tech Nucl Mat, Shenyang 110016, Peoples R China 2.North Univ China, Sch Mat Sci & Engn, Shanxi Key Lab Controlled Met Solidificat & Precis, Taiyuan 030051, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Zhen,Wu, Xinqiang. Interpreting electrochemical noise signal arising from stress corrosion cracking of 304 stainless steel in simulated PWR primary water environment by coupling acoustic emission[J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T,2022,20:3807-3817. |
APA | Zhang, Zhen,&Wu, Xinqiang.(2022).Interpreting electrochemical noise signal arising from stress corrosion cracking of 304 stainless steel in simulated PWR primary water environment by coupling acoustic emission.JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T,20,3807-3817. |
MLA | Zhang, Zhen,et al."Interpreting electrochemical noise signal arising from stress corrosion cracking of 304 stainless steel in simulated PWR primary water environment by coupling acoustic emission".JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T 20(2022):3807-3817. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。