中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Influence of Nonmetallic Interstitials on the Phase Transformation between FCC and HCP Titanium: A Density Functional Theory Study

文献类型:期刊论文

作者Yang, Mengmeng3; Hu, Jianan3; Cao, Shuo4; Feng, Guang1; Yang, Yi3; Liu, Renci4; Li, Shujun4; Zhao, Fu1; Feng, Aihan5; Hu, Qingmiao4
刊名METALS
出版日期2022-10-01
卷号12期号:10页码:12
关键词titanium interstitial FCC phase first-principles
DOI10.3390/met12101607
通讯作者Wang, Hao(haowang7@usst.edu.cn)
英文摘要In addition to the common stable and metastable phases in titanium alloys, the face-centered cubic phase was recently observed under various conditions; however, its formation remains largely unclarified. In this work, the effect of nonmetallic interstitial atoms O, N, C and B on the formation of the face-centered cubic phase of titanium was investigated with the density functional theory. The results indicate that the occupancy of O, N, C and B on the octahedral interstitial sites reduces the energy gap between the hexagonal-close-packed (HCP) and face-centered cubic (FCC) phases, thus assisting the formation of FCC-Ti under elevated temperature or plastic deformation. Such a gap further decreases with the increase in the interstitial content, which is consistent with the experimental observation of FCC-Ti under high interstitial content. The relative stability of the interstitial-containing HCP-Ti and FCC-Ti was studied against the physical and chemical origins, e.g., the lattice distortion and the electronic bonding. Interstitial O, N, C and B also reduce the stacking fault energy, thus further benefiting the formation of FCC-Ti.
资助项目Shanghai Engineering Research Center of High-Performance Medical Device Materials[20DZ2255500] ; Key-Area Research and Development Program of GuangDong Province[2019B010941001] ; Major Special Science and Technology Project of Yunnan Province[202002AB080001-3] ; National Natural Science Foundation of China[91960202] ; National Natural Science Foundation of China[52001307] ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences[QYZDJ-SSW-JSC031] ; State Key Laboratory of Light Alloy Casting Technology for High-end Equipment[LACT-007] ; Shenyang Talents program[RC200230] ; Opening Project of National Key Laboratory of Shock Wave and Detonation Physics[2022JCJQLB05702]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
出版者MDPI
WOS记录号WOS:000873175700001
资助机构Shanghai Engineering Research Center of High-Performance Medical Device Materials ; Key-Area Research and Development Program of GuangDong Province ; Major Special Science and Technology Project of Yunnan Province ; National Natural Science Foundation of China ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences ; State Key Laboratory of Light Alloy Casting Technology for High-end Equipment ; Shenyang Talents program ; Opening Project of National Key Laboratory of Shock Wave and Detonation Physics
源URL[http://ir.imr.ac.cn/handle/321006/176498]  
专题金属研究所_中国科学院金属研究所
通讯作者Wang, Hao
作者单位1.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen 518055, Peoples R China
2.Monash Univ, Monash Ctr Addit Mfg MCAM, Notting Hill, Vic 3168, Australia
3.Univ Shanghai Sci & Technol, Interdisciplinary Ctr Addit Mfg ICAM, Sch Mat & Chem, Shanghai 200093, Peoples R China
4.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
5.Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
推荐引用方式
GB/T 7714
Yang, Mengmeng,Hu, Jianan,Cao, Shuo,et al. Influence of Nonmetallic Interstitials on the Phase Transformation between FCC and HCP Titanium: A Density Functional Theory Study[J]. METALS,2022,12(10):12.
APA Yang, Mengmeng.,Hu, Jianan.,Cao, Shuo.,Feng, Guang.,Yang, Yi.,...&Wang, Hao.(2022).Influence of Nonmetallic Interstitials on the Phase Transformation between FCC and HCP Titanium: A Density Functional Theory Study.METALS,12(10),12.
MLA Yang, Mengmeng,et al."Influence of Nonmetallic Interstitials on the Phase Transformation between FCC and HCP Titanium: A Density Functional Theory Study".METALS 12.10(2022):12.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。